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 Abstract: Antimicrobial hybrids are compounds that can inhibit, stop the growth of, or 

kill microorganisms, including bacteria, fungi, and parasites. Antibiotics, a subset of an-

timicrobial agents, specifically target bacteria and include well-established classes such 

as β-lactams, macrolides, quinolones, and oxazolidinones. Other antimicrobial hybrids 

are designed for treating a wide range of diseases, including fungal infections, leish-

maniasis, parasitic diseases (such as trypanosomiasis and malaria), leprosy, and tuber-

culosis. Some hybrids are designed to treat a variety of diseases. This review highlights 

studies primarily published between 2000 and 2023, with a few from 2024, underscor-

ing the dynamic and rapidly evolving nature of antimicrobial hybrid research.  
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1. INTRODUCTION  

The first comprehensive review on hybrid com-

pounds focused on chimera molecules developed for 

the treatment of central nervous system disorders [1]. 

In contrast, this review centers on the application of 

hybrid drugs as antimicrobial agents, as discussed in 

recent literature. 

Relevant publications were identified through tar-

geted searches in SciFinder and in leading medicinal 

chemistry and related biological journals, including 

those from the American Chemical Society, Bioorganic 

& Medicinal Chemistry, Bioorganic & Medicinal 

Chemistry Letters, Current Medicinal Chemistry, Eu-

ropean Journal of Medicinal Chemistry, Antimicrobial 

Agents and Chemotherapy, Bioorganic Chemistry, and 

MedChemComm. The primary search terms used were 

hybrids, conjugates, and chimeras. 

The selected abstracts highlight compounds exhibit-

ing significant or promising antimicrobial activity 

against bacterial, fungal, tuberculosis, and malaria-

related pathogens. These studies emphasize the chemi-

cal structures of the most active molecules. A common  
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structural feature among many of these hybrids is the 

incorporation of heterocyclic "azole" moieties-such as 

triazoles [2], tetrazoles, carbazoles, pyrazoles, oxadia-

zoles, isoxazoles, and imidazoles-as well as other bio-

active scaffolds like quinolines, triazines, and chalcon-

es. 

2. SELECTED REVIEWS OF ANTIMICROBIALS 

Fedorowicz and Saczewski published a comprehen-

sive survey on hybrid quinolones and fluoroquinolones, 

highlighting artificial nucleases capable of cleaving 

DNA, as well as quinolone-peptide hybrids, NO-donor 

quinolone hybrids, fluoroquinolone-bisphosphonate 

hybrids, and various other antimicrobial quinolone hy-

brids [3]. Reviews by Shi et al. and Gao et al. focused 

on hybrids designed to combat resistance in ESKAPE 

bacteria (E. coli, Staphylococcus aureus, Klebsiella 

pneumoniae, Acinetobacter baumannii, Pseudomonas 

aeruginosa, and Enterobacter spp.) [4-6]. Xu et al. pre-

sented a dedicated review on fluoroquinolone-isatin 

conjugates [7], while Huang et al. summarized the an-

tibacterial activities of tetrazole-derived hybrids [8]. 

Klahn and Brönstrup proposed a novel hypothesis for 

designing dual-action hybrid antibiotics effective 

against Gram-negative (G-) pathogens, particularly 

Pseudomonas aeruginosa, which have developed vari-

ous resistance mechanisms. They discussed hybrids 
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created by linking an antibiotic to a second functional 

unit, often another antibiotic [9]. Bremner et al. and 

Domalaon et al. reviewed hybrids composed of two 

bridged antibiotics in several extensive publications 

[10-12]. Henriquez-Figuereo, Sanmartín, and Plano et 

al. reviewed hybrids containing sulfur, selenium, and 

tellurium, and their potential in treating tropical diseas-

es [13]. Saadeh and Mubarak examined the role of hy-

brids in combating microbial drug resistance [14]. 

3. BIOFILM INHIBITORS, EFFLUX PUMP IN-

HIBITORS, MRSA, QUORUM SENSING INHIB-

ITORS  

When evaluating the activity of antimicrobial 

agents, it is essential to assess their effectiveness 

against Gram-positive (G+) methicillin-resistant Staph-

ylococcus aureus (MRSA). Over time, many bacteria 

have developed resistance to commonly used antibiot-

ics, creating a global health threat as infections become 

increasingly difficult to treat. A significant mechanism 

contributing to antibiotic resistance is the emergence of 

efflux pumps, which actively remove antibiotics from 

bacterial cells, rendering them less susceptible to 

treatment. Another key factor in microbial virulence is 

quorum sensing, a process by which bacteria regulate 

their population density through gene expression. This 

regulation is critical for biofilm formation, and when 

bacterial populations reach a certain density, biofilms 

can form and shield bacteria from the host immune re-

sponse, enabling them to resist phagocytosis and cause 

persistent infections. As a result, strategies aimed at 

inhibiting biofilm formation or disrupting established 

biofilms are considered promising antibacterial ap-

proaches. More detailed descriptions of quorum sens-

ing and bacterial biofilms can be found on Wikipedia 

[15, 16]. 

3.1. Biofilm Inhibitors  

Hybrids of ciprofloxacin linked to 3-hydroxy-

pyridin-4(1H)-ones were evaluated as dual antibacterial 

and antibiofilm agents against Pseudomonas aerugino-

sa. The most active compound, 1, exhibited minimum 

inhibitory concentrations (MICs) of 0.86 and 0.43 μM 

against P. aeruginosa strains 27853 and PAO1, respec-

tively, and reduced biofilm formation by 78.3%. The 

mechanism of action was linked to the interference 

with iron uptake, which resulted in inhibited bacterial 

motility and reduced virulence [17]. Additionally, the 

non-toxic ciprofloxacin-nitroxide hybrid, 2, achieved 

complete destruction of established P. aeruginosa bio-

films [18]. Linking 1,3,5-triazines to pyrazoles via a 

thioamidic bridge resulted in hybrids with potent anti-

bacterial activity. Compound 3 exhibited MICs ranging 

from 3.91 to 15.62 μM/mL and demonstrated anti-

biofilm activity at 15.62 μM/mL [19]. Quaternary am-

monium salts (compound 4), obtained by intensive 

methylation of the nitrogen atoms in fluoroquinolone 

antibiotics (ciprofloxacin, enoxacin, gatifloxacin, 

lomefloxacin, and norfloxacin), exhibited strong anti-

bacterial activity against both G+ and G- bacteria 

(MICs as low as 6.25 μM). These compounds also re-

duced biofilm mass in Pseudomonas aeruginosa ATCC 

15442 and were found to be of low toxicity [20]. Addi-

tional antibiofilm agents against P. aeruginosa include 

hybrids of 3-benzimidazoles linked to hydroxypyridin-

4-(2H)-ones, such as compound 5 [21]. The pyrazolo-

pyrimido[4,5-d]pyrimidine hybrid 6 also inhibited Mi-

crococcus luteus and S. aureus, with MICs of 3.9 and 

7.8 μg/mL, respectively [22]. Biofilm formation inhibi-

tors 7a and 7b showed approximately 50% efficacy 

against the pathogenic yeast Candida albicans at con-

centrations of 2-4 μg/mL [23]. Additionally, hybrids 

like compound 8 (IC50 0.5 μg/mL), derived from cur-

cumin and aminophosphonates, effectively eradicated 

S. aureus biofilms and expanded the antibacterial spec-

trum when combined with norfloxacin. This mecha-

nism involved disruption of bacterial cell membrane 

integrity (Fig. 1) [24]. 

3.2. Efflux Pump Inhibitors  

Hybrid drugs, such as compound 9, inhibit the NorA 

efflux pump and enhance the photodynamic inactiva-

tion of G- Escherichia coli and Acinetobacter bau-

mannii bacteria [25, 26]. Antibiotic hybrids 10 and 11, 

which combine carbazole derivatives with efflux pump 

inhibitors like gallic acid or 3-indoleacetic acid, exhib-

ited remarkable potency at a concentration of 0.05 

µg/mL against several bacterial strains, including E. 

coli, Staphylococcus aureus, Pasteurella multocida, 

and Bacillus subtilis [27]. Hybrid drugs 12, which 

combine the calcium channel blocker verapamil and 

certain antipsychotic phenothiazines-both known efflux 

pump inhibitors-were found to be non-toxic and en-

hanced antitubercular activity, with an MIC90 of ap-

proximately 3.17 µg/mL, due to efflux pump inhibition 

[28]. Additionally, conjugating 5-nitro-2-phenyl-1H-

indole (which lacks intrinsic antibacterial activity) with 

the natural product berberine resulted in a reduced MIC 

for berberine by inhibiting the NorA efflux pump. Ester 

prodrugs of indole and berberine, as well as hybrids 

like compound 13, demonstrated high antibacterial po-

tency against G+ bacteria S. aureus 8325-4, E. faecalis 

V-583, and Bacillus cereus T, with MIC values of 3.1, 

6.3, and 3.1 µM, respectively (Fig. 2) [29, 30].  
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Fig. (1). Biofilm formation inhibitors. 

3.3. MRSA  

Reviews by Qiao, Zhu, Verma, Kumar, and Ran-

gappa explored MRSA inhibitors derived from thia-

zoles and oxadiazoles as potential antibiotics against 

MRSA [31, 32]. Researchers conjugated amphiphilic 

aminoglycosides, such as neomycin B and kanamycin 

A, with cationic peptide antibacterial agents through 

1,2,3-triazole linkages, creating aminoglycoside-

peptide triazole conjugates, including hybrid 14. These 

conjugates exhibited enhanced antibacterial potency 

against MRSA and gentamicin-resistant Pseudomonas 

aeruginosa, though they were less effective against 

susceptible strains [33]. The indole-carbazole hybrid 15 

showed notable antibacterial activity, with an MIC of 1 

µg/mL against MRSA, comparable to vancomycin, and 

resulted in 75% survival in a mouse model [34]. Novel 

hybrids derived from the terpene pleuromutilin, conju-

gated with pyridinium entities, such as compound 16, 

displayed a broad antibacterial spectrum, with MICs as 

low as 0.0625 µg/mL against Staphylococcus aureus, 

MRSA, and Escherichia coli [35]. The coumarin-

thiazole hybrid 17 exhibited six times greater inhibitory 

activity against MRSA (MIC = 4 µM) compared to 

norfloxacin, functioning as a disruptor of the bacterial 

membrane while binding to DNA gyrase through stable 

hydrogen bonds, thereby impeding cell replication [36]. 

Benzothiazole-urea hybrids like compound 18 demon-

strated similar antibacterial efficacy against MRSA in a 

mouse model of abdominal infection [37]. Non-

cardiotoxic amide-containing hybrids, such as com-

pound 19, were designed as bacterial topoisomerase 

inhibitors (NBTIs) to minimize hERG channel inhibi-

tion. These hybrids showed potent antibacterial activity 

against G+ bacteria, including methicillin-resistant 
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MRSA, in murine models [38]. Additionally, quinolin-

ium stilbene benzenesulfonates, such as compound 20, 

exhibited broad-spectrum activity against both G+ 

MRSA (including S. aureus, Bacillus subtilis, and van-

comycin-resistant Enterococcus faecalis) and G- bacte-

ria (Shigella sonnei) (Fig. 3) [39]. 

3.4. Quorum Sensing Inhibitors  

Coumarin-derived hybrids, such as compound 21, 

exhibit dual activities of iron chelation and quorum 

sensing inhibition, effectively disrupting biofilm for-

mation in Pseudomonas aeruginosa infections. These 

compounds also demonstrate synergistic antibacterial 

effects when combined with ciprofloxacin and tobra-

mycin [40]. Research on chromene-hydrazone hybrids 

revealed that these compounds possess anti-ferroptosis 

(a form of iron-dependent programmed cell death), an-

tibacterial, and anti-quorum-sensing properties. Among 

these, semicarbazone 22a and benzenesulfonyl hydra-

zone derivatives 22b showed moderate quorum sensing 

inhibition [41]. An antimicrobial peptide, CP7-FP13-2, 

specifically inhibited quorum sensing and exhibited 

antibacterial activity against S. aureus by disrupting 

bacterial cell integrity [42]. Benzoxazole hybrids, such 

as compound 23, were found to combine quorum sens-

ing inhibition with potent antibiofilm activity (Fig. 4) 

[43]. 

4. ANTIBIOTICS  

4.1. β-Lactams 

Hybrid 24, synthesized by linking the β-lactam an-

tibiotic Δ-2-cephamycins to tetramic acid, demonstrat-

ed potent antibacterial activity against clinical strains 

of both G+ and G- bacteria, including Klebsiella pneu-

moniae and E. coli [44]. Hybrid 25, which combines a 

β-lactam  with  an  isatin  unit  through  a  1,2,3-triazole  

 

Fig. (2). Efflux pump inhibitors. 
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Fig. (3). MRSA inhibitors.  

 

Fig. (4). Quorum sensing inhibitors. 

bridge obtained via click chemistry, effectively inhibit-

ed the growth of D. vaginalis at a concentration of 100 

µM [45]. Conjugate 26, created by linking ampicillin 

with phosphine-gold units, proved to be a highly effec-

tive antibiotic against G+ bacteria, exhibiting 120 times 

greater potency than ampicillin against S. aureus, S. 

epidermidis, and Enterococcus faecium [46]. The ceph-

alosporin-catechol hybrid 27 displayed broad-spectrum 

antibacterial activity in vitro, particularly against Aci-

netobacter baumannii, Pseudomonas aeruginosa, and 

Klebsiella pneumoniae, and showed significant in vivo 

efficacy against A. baumannii compared to other cate-

chol-derived antibiotics (Fig. 5) [47]. 

4.2. Mycin Antibiotics  

The extensive family of antimicrobial agents known 

as "mycins" includes both natural and synthetic com-

pounds. Some of these drugs have been in use for dec-

ades and remain first-line antibiotics, while others have 

fallen out of favor due to bacterial resistance or unac-

ceptable toxicity. This diverse group encompasses ami- 

noglycosides (e.g., erythromycin, tobramycin, azithro-

mycin, neomycin), glycopeptides (e.g., vancomycin), 

ketolides (e.g., solithromycin), lincosamides (e.g., lin-

comycin), polymyxins, rifamycins (both natural and 

synthetic), and others. To enhance their biological activi-

ty, improve water solubility, combat resistant bacterial 

strains, and/or reduce toxicity, many of these antibiot-

ics have been modified into hybrid compounds. These 

hybrids are often created by linking a "mycin" to a second 

antibiotic, frequently from the quinolone family. This 

approach is favored due to the presence of carboxylic 

acid and secondary amino functionalities in quinolones, 

which facilitate the formation of linking bridges. 
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Mutak et al. reported that hybrids 28a and 28b, 

which combine the macrolide erythromycin with a 

ciprofloxacin unit, exhibited potent activity against re-

sistant bacteria [48]. Conjugate 29 demonstrated high 

efficacy against resistant strains of Streptococcus 

pneumoniae and Streptococcus pyogenes, and was par-

ticularly effective against resistant Staphylococcus au-

reus, Haemophilus influenzae, and Moraxella catarrh-

alis. The azithromycin-quinolone hybrid 30 also dis-

played significant antibacterial activity (Fig. 6a) [49]. 

Additionally, erythromycin analogs, such as the 

solithromycin oxime derivatives 31 and dehydroso-

lithromycin congeners 32, showed enhanced activity 

against various resistant bacterial strains [50, 51]. To-

bramycin, an aminoglycoside antibiotic primarily used 

for treating G- infections-particularly Pseudomonas 

strains-was combined with polymyxin B3 in hybrid 33. 

This conjugate was highly effective against car-

bapenem-resistant and MDR P. aeruginosa clinical 

isolates. Similar effectiveness was observed with to-

bramycin-ciprofloxacin hybrids, which restored antibi-

otic activity against P. aeruginosa [52, 53]. Other hy-

brids, such as those combining tobramycin with pro-

line-rich peptides, also demonstrated activity against 

resistant pathogens [54]. Tobramycin-ciprofloxacin 

conjugates, with ciprofloxacin attached at two different 

positions on tobramycin (compounds 34a and 34b), 

exhibited notable adjuvant effects (Fig. 6b) [55]. 

Arbekacin analogs of tobramycin, e.g. 35, were ef-

fective against both susceptible and MRSA strains of 

P. aeruginosa [56]. Nebramine-quinolone hybrids, in-

cluding nebramine-moxifloxacin 36, displayed adju-

vant potency by reducing the MIC of moxifloxacin to 

below 1 µg/mL against multidrug resistance (MDR) P. 

aeruginosa [57]. Hybridization of polymyxin and van-

comycin, as in compound 37, improved activity against 

G- bacteria (Fig. 6c) [58]. 

The rifamycin-nitroimidazole hybrid, compound 38, 

exhibited potent activity against microaerophilic and 

anaerobic bacteria resistant to both rifamycins and ni-

troimidazoles. This compound is currently undergoing 

Phase 2 clinical trials for the treatment of Helicobacter 

pylori, Clostridioides difficile, and bacterial vaginosis 

infections [59]. The rifamycin-quinolone derivative 

39a, known as CBR-2092, demonstrated superior bac-

tericidal activity compared to moxifloxacin, rifampin, 

and a combination of both [60]. Kanglemycin, a close 

analog of rifamycin, was hybridized with garenoxacin 

in compound 39b to overcome resistance mutations. 

The design of the linking bridge was critical for achiev-

ing effective anti-Staphylococcus aureus activity [61]. 

 
Fig. (5). -Lactam antibiotics. 
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Other mycin hybrids include a neomycin-ciprofloxacin 

derivative 40, which exhibited higher potency than ne-

omycin B against G- bacteria and MRSA, inhibited 

bacterial protein synthesis as effectively as or better 

than neomycin B, and was up to 32 times more potent 

as an inhibitor of DNA gyrase and topoisomerase IV 

than ciprofloxacin [62]. Another conjugate, compound 

41, involved linking neomycin to phenolic units via a 

1,2,3-triazole-containing bridge (Fig. 6d) [63, 64]. 

The glycosylated macrocyclic fidaxomicin, used for 

treating Clostridium difficile infections, was initially 

coupled with biphenolic dichlorohomoorsellinic acid 

and later with ciprofloxacin. The resulting product, 

compound 42, was found to improve aqueous solubility 

and enhanced antibiotic activity compared to fidax-

omicin [65]. Kanamycin, used for severe bacterial in-

fections and hydatidosis, was hybridized with ciprof-

loxacin  to  form  compound  43,  which  significantly  

 

Fig. (6a). Mycin antibiotics. 
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Fig. (6b). Mycin antibiotics. 
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Fig. (6c). Mycin antibiotics. 
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Fig. (6d). Mycin antibiotics. 
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Fig. (6e). Mycin antibiotics. 

 

Fig. (7). Clinically approved oxazolidone antibiotics. 

delayed the development of resistance in E. coli and 

Bacillus subtilis [66]. However, compound 44, derived 

from a substituted 3-deoxy lincomycin bridged to the 

desosamine unit of erythromycin, showed limited an-

timicrobial activity, which was attributed to poor cell 

penetration or efflux [67]. Extensive studies suggest 

that the most effective antibiotics for treating Clostrid-

ium difficile infections remain vancomycin, fidax-

omicin, and metronidazole (Fig. 6e) [68]. 

4.3. Oxazolidinones - Thiazolidinones - Imidazoli-

dinones  

Clinically approved oxazolidinone antibiotics, in-

cluding linezolid, tedizolid phosphate, and contezolid, 

are effective against G+ bacteria. Reviews on the de-

velopment of new oxazolidinones have been extensive-

ly published by Renslo et al., Michalska et al., and Yu-

an, Wang, and Liu et al [69-71]. A perspective review 

specifically focused on oxazolidinone antibacterial 

agents was also published by Luo, Wang, and Tang et 

al. [72]. Furthermore, Aggen et al. provided guidelines 

for overcoming efflux and permeation barriers in Esch-

erichia coli (Fig. 7) [73]. 

Hybrids 45a-c, created by combining two antibiot-

ics, were derived from the clinically approved cadazol-

id, which is effective against Clostridium difficile in-

fections [74-78]. Another promising antibacterial 

agent, hybrid 46, was developed by replacing the mor-

pholino group of linezolid with a tetrahydroisoquino-

line-6,7-diol [79]. Further modification of linezolid in 

hybrid 47 involved replacing the acetamide group with 

a thiocarbamate and substituting the morpholine ring 
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with a 3-pyridin-2-yl-acryloyl group. This hybrid was 

reported to show an in vitro antimicrobial MIC range 

from 0.25 to 2 µg/mL [80]. Subsequent modifications 

led to the development of isoxazolinyl oxazolidinone 

hybrids 48, which were 2-10 times more potent than 

linezolid against Staphylococcus aureus, Bacillus cere-

us, Enterococcus faecalis, Klebsiella pneumoniae, and 

Streptococcus pyogenes [81]. Further optimization pro-

duced hybrid 49, which exhibited even greater antibac-

terial activity, with an MIC ranging from 0.006 to 195 

µg/mL [82]. Benzo[d]thiazole-based thiazolidinone 

hybrids were evaluated against a broad range of bacte-

ria, including Salmonella typhimurium, Staphylococcus 

aureus, Escherichia coli, and Listeria monocytogenes, 

as well as resistant strains like Pseudomonas aerugino-

sa, E. coli, and MRSA. These hybrids showed minimal 

bactericidal concentrations (MBCs) and minimal inhib-

itory concentrations (MICs) in the ranges of 0.15-3 

mg/mL and 0.1-2 mg/mL, respectively. Among them, 

conjugate 50 proved to be the most potent [83]. Addi-

tionally, novel pyrrole-thiazolidone hybrids were de-

signed and tested against ESKAP (Enterococcus faeci-

um, Staphylococcus aureus, Klebsiella pneumoniae, 

Acinetobacter baumannii, Pseudomonas aeruginosa, 

and Enterobacter species) bacteria. Hybrid 51 demon-

strated significant activity against Mycobacterium tu-

berculosis H37Rv, multiple MRSA strains, and re-

duced S. aureus biofilm formation [84]. In the pursuit 

of new antibiotics for various infections, several stable 

lactam analogs, such as hybrid 52, derived from the 

marine depsipeptide solonamides, exhibited compara-

ble activity against the Staphylococcus aureus AgrC 

receptor [85]. Furthermore, hybrid 53, which combines 

fragments of sparsomycin and linezolid, showed strong 

interaction with the 50S ribosome. This led to the de-

velopment of diaryl analogs 54, which displayed potent 

activity against both linezolid-susceptible and -resistant 

G+ bacteria, as well as common G- bacteria like Hae-

mophilus influenzae and Moraxella catarrhalis (Fig. 8) 

[86]. 

 

 

 
 

Fig. (8) Contd… 
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Fig. (8). Oxazolidinones, thiazolidinones and imidazolidinones. 

4.4. Quinolines and Quinolones 

Quinolone antibiotics represent a diverse class of 

compounds characterized by their amino and carbox-

ylic functionalities, which facilitate the creation of hy-

brids with other biologically active drugs. Among 

these, ciprofloxacin is the most commonly used quino-

lone for forming such conjugates. This section explores 

various quinolone hybrids, specifically those combined 

with other antimicrobial agents, often referred to as 

"mycins." 

4.4.1. Reviews on Quinolone Hybrids 

Extensive reviews on the advancements in synthetic 

quinolones and their hybrids have been published by 

Monga et al., as well as Blaskovich et al., Feng and 

Liu, and Zhao and Ji. These reviews offer in-depth in-

sights into the development and applications of quino-

lone-based hybrids [87-90].  

4.4.2. Key Quinolone Hybrids and Their Activities 

 Miconazole-Ciprofloxacin Hybrid (55): A 

fluorinated analog of the antifungal miconazole, 

tethered to ciprofloxacin, exhibited exceptional 

antibacterial activity [91]. 

 Fluconazole-Clinafloxacin Hybrid (56): This 

hybrid showed significant antibacterial efficacy 

[92]. 

 Fluoroquinolone-3-Arylfuran-2(5H)-one Hy-

brid (57): The combination of fluoroquinolones 

with novel 3-arylfuran-2(5H)-ones resulted in 

broad-spectrum antibacterial activity against 

MDR strains of both G+ and G- bacteria. Com-

pound 57, with an MIC50 of 0.11 mg/mL against 

MDR E. coli, was approximately 50 times more 

potent than ciprofloxacin. It also inhibited 

DN832-A gyrase and tyrosyl-RNA synthase, 

further enhancing its therapeutic potential [93]. 
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 Metronidazole-Quinolone Hybrids (58, 59): 

The linkage of metronidazole fragments to 

quinolones produced hybrids such as 58 and 59, 

which showed promising antibacterial activity. 

Hybrid 59 intercalates into the DNA of Pseu-

domonas aeruginosa through a Cu²⁺ bridge, 

forming a stable ternary complex [94, 95]. 

 Trimethoprim-Quinolone Hybrids (60, 61): 

These hybrids, created by connecting fluoro-

quinolones to the pyrimidine fragment of trime-

thoprim using click chemistry, exhibited broad-

spectrum activity against both drug-resistant 

and drug-sensitive G+ and G- bacteria. Notably, 

they were non-toxic, adding to their therapeutic 

potential [96]. 

 Ciprofloxacin-Naringenin Hybrid (62): The 

combination of ciprofloxacin with the flavonoid 

efflux pump inhibitor naringenin led to hybrid 

62 that exhibited strong antibacterial activity. Its 

MIC50 values ranged from 0.062 to 0.71 mg/mL 

against MDR Escherichia coli ATCC 35218, 

tetracycline-resistant Bacillus subtilis ATCC 

6633, MRSA ATCC 25923, and amphotericin 

B-resistant Candida albicans ATCC 90873 [97]. 

 Ciprofloxacin-Sulfonamide Hybrids (63, 64): 

Hybridization of ciprofloxacin with sulfona-

mides led to compounds that showed significant 

improvements in antibacterial activity against 

both G+ and G- pathogens, such as S. aureus 

Newman and E. coli ATCC 8739, compared to 

ciprofloxacin alone [98]. 

 Piperazinyl Quinolone Derivatives (65): 

These derivatives, including compound 65, 

demonstrated enhanced potency against G+ bac-

teria, such as Staphylococcus aureus and Staph-

ylococcus epidermidis, outperforming both nor-

floxacin and ciprofloxacin. The nature of the 

thio group (S vs. SO₂) played a crucial role in 

determining the compound's activity [99]. 

 Fluoroquinolone Hybrids (66-68): Additional 

optimization of antibacterial activity was 

achieved with hybrids of quinolones and fluo-

roquinolones. Compounds 66-68 displayed 

strong activity against Salmonella typhi, Staphy-

lococcus aureus, and Streptococcus pyogenes, 

respectively (Fig. 9) [100]. 

4.4.3. Addressing Antibiotic Resistance through 

Quinolone Hybrids 

As bacterial resistance to numerous antibiotics, in-

cluding quinolones, continues to rise, there has been an 

intensified focus on developing a wide range of hybrid 

compounds. The primary objective is to combat or de-

lay the development of resistance. To achieve this, 

quinolone antibiotics are being linked with biologically 

active molecules or fragments, with the expectation 

that these hybrid compounds may offer enhanced effi-

cacy compared to their individual components. Addi-

tionally, the hope is that hybridization will slow the 

emergence of bacterial resistance. Below are selected 

examples of quinolone-based hybrids, compounds 69-81: 

 Compound 69: A hybrid of ciprofloxacin and 

2-fluoroaniline, demonstrating promising anti-

bacterial activity [101]. 

 Compound 70: Norfloxacin linked to a pyrimi-

dine, showing activity against both G+ and G- 

bacteria [102]. 

 Compound 71: A combination of ciprofloxacin 

and pyrazine, exhibiting effective antimicrobial 

properties [103]. 

 Compound 72: A ciprofloxacin-thiadiazole hy-

brid, which exhibited enhanced antibacterial ac-

tivity [104]. 

 Compound 73: Combining ciprofloxacin with 

1,2,4-triazole gave a hybrid that showed signifi-

cant antibacterial efficacy [105-106]. 

 Compound 74: Ciprofloxacin hybridized with 

the natural product isatin via a propylene 

bridge, displayed strong antibacterial activity 

[107]. 

 Compound 75: A quinolone-7-thiazoxime hy-

brid mitigated bacterial resistance by binding to 

DNA gyrase [108]. 

 Compound 76: A ciprofloxacin-benzopyrone 

conjugate, demonstrated effective bactericidal 

activity, with MICs ranging from 0.5-2 µM 

[109]. 

 Compound 77: A quaternary ammonium salt 

derived from gatifloxacin was active against E. 

coli gyrase supercoiling [110]. 

 Compound 78: A hybrid of fluoroquinolone 

and a triazolyl ethanol fragment, exhibiting both 

antimicrobial and antifungal activity, superior to 

chloramphenicol, norfloxacin, and fluconazole 

[111]. 

 Compound 79: By combining DAPT and cis-

1,3-diamino-piperidine-triazines, this hybrid 

shows activity against Pseudomonas aerugino-

sa, even in the presence of serum [112]. 
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Fig. (9). Quinolone antibacterials. 
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Fig. (10). Miscellaneous quinolone antibiotic hybrids. 
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 Compound 80: A hydrolyzed benzofuroxan-

fluoroquinolone hybrid that forms salts with 

improved antibacterial activity against Bacillus 

cereus 8035 compared to the parent compound 

lomefloxacin [113]. 

 Compound 81: A photoswitchable antibiotic 

combining a quinolone with azopyrazole, which 

demonstrates bidirectional photoisomerization 

and enhances antibacterial activity upon irradia-

tion, particularly against G+ bacteria (Fig. 10) 

[114]. 

These quinolone hybrids represent a promising ave-

nue for developing more potent antibiotics and over-

coming the challenge of bacterial resistance. 

4.5. Assorted Antibacterial Hybrids 

Recent studies on antibacterial hybrids featuring 

oxadiazole derivatives have identified compounds such 

as 82-84, which typically demonstrate activity against 

both G+ bacteria (e.g., Staphylococcus aureus, Bacillus 

subtilis) and G- bacteria (e.g., Escherichia coli, Pseu-

domonas aeruginosa) [115-117]. Other hybrids incor-

porating sulfonamido groups, such as compound 85, 

have shown promising potency against E. coli K2, 

while hybrid 86 exhibited inhibitory effects against 

resistant Enterococcus faecalis [118, 119]. 

The metronidazole-iminotetrahydroberberine hybrid 

87 displayed broad-spectrum antibacterial activity, with 

an MIC of 0.024 mM against P. aeruginosa, outper-

forming berberine, metronidazole, and norfloxacin in 

terms of potency [120]. Dihydrotriazine hybrids, repre-

sented by compound 88, exhibited effective inhibitory 

effects with an MIC of 0.5 µg/mL against various bac-

terial strains, including G+ (S. aureus 4220 and QRSA 

CCARM 3505) and G- (E. coli 1924) pathogens [121]. 

New triazole-fused imidazo[2,1-b]thiazole hybrids, 

such as compound 89, showed robust inhibition of both 

G+ and G- bacteria, with MICs ranging from 1.9 to 3.9 

µg/mL [122]. Xanthone-muchimangin hybrids, repre-

sented by compound 90, exhibited significant antibac-

terial activity against S. aureus, B. subtilis, Klebsiella 

pneumoniae, and E. coli [123]. 

Compounds like 91, which act as potent low-

nanomolar inhibitors of bacterial DNA gyrase and 

topoisomerase IV, demonstrated strong antibacterial 

effects against ESKAPE pathogens. These hybrids 

were non-toxic in vitro and showed impressive potency 

against both G+ (MICs ranging from 0.0078 to 0.0625 

µg/mL) and G- pathogens (MICs ranging from 1 to 2 

µg/mL). The dual enzyme inhibition mechanism of 

these compounds suggests a reduced risk of bacterial 

resistance development (Fig. 11) [124]. 

5. ANTIFUNGAL HYBRIDS 

Fungi, intricate architects of the microbial world, 

encompass over 300 known human pathogens, many of 

which are responsible for severe and difficult-to-treat 

diseases. These include aspergillosis, candidiasis, coc-

cidioidomycosis, cryptococcosis, histoplasmosis, my-

cetomas, and paracoccidioidomycosis. Individuals with 

compromised immune systems, such as those with 

HIV/AIDS, cancer, or organ transplants, are especially 

vulnerable to infections caused by genera like Aspergil-

lus, Candida, Cryptococcus, Histoplasma, and Pneu-

mocystis. In addition to internal infections, fungi can 

affect the skin, nails, hair, and eyes, causing conditions 

like ringworm and athlete's foot. Fungal spores also 

play a role in triggering allergic reactions, which can 

result in a range of immune responses. 

The arsenal of antifungal agents available for treat-

ment includes a diverse range of compounds. Key clas-

ses include polyenes, such as amphotericin B, fluorocy-

tosine, and azoles (both imidazoles and triazoles). Oth-

er important agents include allylamines like terbinafine 

and naftifine, as well as griseofulvin and tolnaftate. 

These antifungals have been further optimized into hy-

brid forms to enhance efficacy and broaden their thera-

peutic potential in treating fungal infections. 

In parallel, pulmonary tuberculosis (TB), caused by 

Mycobacterium tuberculosis, remains a major global 

health threat, claiming over two million lives annually. 

Although antibiotics are the primary treatment for TB, 

there has been a growing focus on hybrid compounds 

that target both fungal infections and TB. This review 

explores these hybrid compounds, which often share 

structural similarities aimed at increasing effectiveness 

against both types of pathogens. 

5.1. Selected Antifungal Hybrid Reviews 

Several comprehensive reviews have discussed anti-

fungal hybrids in detail: 

 Marzi et al. provided an extensive review of bi-

ologically active 1,2,3-triazole derivatives, in-

cluding clinically approved antifungal hybrids 

[125]. 

 Ghani reviewed various azole derivatives as an-

tifungals [126]. 

 Wang et al. explored antifungal tetrazole hy-

brids [127]. 
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Fig. (11). Diverse antibacterial hybrids. 

 Sharma and Chandrika presented a minireview 

on promising antifungal conjugates [128]. 

 Jin summarized antifungal flavonoids [129]. 

 Wan et al. examined β-carboline as a basis for 

antifungal compounds [130]. 

 Karpoormath et al. reviewed the piperazine 

platform for drug development, including anti-

fungal agents, covering literature from 1971 to 

2019 [131]. 

 Emami et al. discussed the structures and prop-

erties of voriconazole analogs [132]. 

 Muszalska-Kolos et al. published a perspective 

on the antifungal effects of azole and amphoter-

icin B conjugates with fatty acids, polysaccha-

rides, proteins, and synthetic polymers [133]. 

5.2. 1,2,3- and 1,2,4-Triazole-Derived Hybrids 

Several reviews have also examined hybrids with 

antitubercular properties: 

 Elsman et al. presented a synopsis of 5-

nitrofuran derivatives as potential antitubercu-

lar agents [134]. 

 Antitubercular hybrids based on thiazolidin-4-

ones were reviewed by Trotsko [135]. 

 Sharma and Tiwari discussed antitubercular 

triazole derivatives [136]. 



Hybrids/Conjugates/Chimera Drugs-Antimicrobial Hybrids Current Medicinal Chemistry, XXXX, Vol. XX, No. X    19 

 

 

 

Fig. (12). Antifungal triazole hybrids. 
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Fig. (13). Antifungal pyrazole and tetrazole hybrids. 

 In 2022, Dhameliya et al. published a five-year 

review of anti-tubercular compounds [137]. 

Notable antifungal hybrids include: 

 Ferrocene-chalcones linked via a 1,2,3-triazole 

ring to trialkoxysilane groups (compound 92), 

which exhibited excellent efficacy against Gi-

ardia lamblia [138]. 

 Benzotriazoles (compound 93) demonstrating a 

broad spectrum of antifungal activity [139]. 

 Fluoroquinolones linked to indolones via a 

1,2,3-triazole-carrying bridge (compound 94) 

showing significant anti-mycobacterial activity 

[140]. 

 Several anti-mycobacterial hybrids (com-

pounds 95-100) incorporating fluconazole and 

its analogs, including ravuconazole [141-146]. 

 Albaconazole-based hybrids (compound 101), 

which exhibited potent in vitro antifungal ac-

tivity against Candida albicans, Cryptococcus 

neoformans, and Aspergillus fumigatus, with 

MIC values ranging from <0.008 to 2 μg/mL. 

These hybrids also showed effectiveness 

against fluconazole-resistant C. auris and im-

proved survival in mice infected with C. albi-

cans [147]. 

 Similar promising activities were observed for 

compounds 102 and 103 [148-149]. 

 Azole (compound 104) and azolium (com-

pound 105) fragments linked to phenols are 

non-toxic antifungals [150]. 

Hybrids effective against resistant C. albicans in-

clude dual inhibitors of the bromodomain protein 

BRD4, linked to an HDAC inhibitor, such as com-

pound 106 (Fig. 12) [151]. 

5.3. Pyrazole and Tetrazole-Derived Antifungal Hy-

brids 

The pyrazole carboxamide hybrid 107 exhibits sig-

nificant antifungal activity against Rhizoctonia solani, 

Fusarium oxysporum, Phytophthora infestans, and 

Fusarium graminearum. It outperforms the fungicide 

fluxapyroxad and targets succinate dehydrogenase as 

its mechanism of action [152]. The 5-aminotetrazole 

hybrid 108 shows promising potential for treating can-

didal infections, with potent activity at concentrations 

as low as 1.3 μM. It is effective both as a standalone 

treatment and in combination with polyene antifungals, 

particularly nystatin [153]. Furthermore, hybrids incor-

porating tetrazole units linked to benzodiazepines, such 

as compound 109, inhibit Candida without inducing 

toxicity [154]. Other hybrids, like compound 110, syn-

thesized from various precursors, have demonstrated a 

broad spectrum of antiparasitic activities, including 

antibacterial, antimycobacterial, antifungal, and anti-

proliferative effects (Fig. 13) [155]. 

5.4. Benzimidazole, Imidazole, and Imidazoline-

Derived Antifungal Hybrids 

Two studies by Sun et al. investigated hybrids com-

bining classical NSAIDs (e.g., ketoprofen, naproxen, 

flurbiprofen) with diazole and triazole moieties, lead-

ing to compounds like 111. These hybrids effectively 

inhibited the CYP51 enzyme, resulting in the accumu-

lation of reactive oxygen species (ROS) and subse-
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quent fungal apoptosis. Additionally, they inhibited 

COX-2, an enzyme involved in inflammatory processes 

[156, 157]. Benzimidazole-based hybrids, such as 112, 

demonstrated antifungal activity against Candida spp. 

and Cryptococcus neoformans, with MICs ranging 

from <0.063 to 1 μg/mL. These compounds also exhib-

ited favorable ADMET (absorption, distribution, me-

tabolism, excretion, toxicity) properties compared to 

the standard antifungal fluconazole. Docking studies 

revealed that the benzimidazol-2-ylthio fragment 

played a key role in their antifungal efficacy [158]. 

Coumarin-imidazole hybrids, exemplified by 113, 

exhibited notable antibiofilm activity and were effec-

tive against drug-resistant fungi, including fluconazole-

resistant C. albicans, by inhibiting ergosterol biosyn-

thesis [159]. The spirooxindolo-pyrrolidine hybrid 114 

showed antifungal activity and inhibited biofilm for-

mation, with no observed toxicity to mammalian cells 

[160]. A series of novel 2-thioxoimidazolidin-4-one 

analogs, such as 115, displayed broad antifungal and 

antimicrobial activity against a variety of pathogens, 

including several Candida albicans strains, Staphylo-

coccus aureus, β-hemolytic streptococcus, Vibrio chol-

erae, Escherichia coli, Pseudomonas aeruginosa, and 

Aspergillus flavus (Fig. 14) [161]. 

5.5. Thiazole and Hydrazine-Derived Antifungal 

Hybrids 

The hybrid 116, with an MIC of 1.56 mg/mL, effec-

tively inhibited 99% of the growth of the M. tuberculo-

sis H37Rv strain [162]. Methylidenebenzenesulfono-

hydrazones, when linked to heterocycles, were tested 

for antifungal activity against phytopathogenic fungi 

such as Fusarium graminearum, Alternaria solani, 

Valsa mali, Phytophthora capsici, Fusarium solani, 

Botrytis cinerea, and Glomerella cingulata. Among 

these, compound 117 showed significant activity at 

concentrations of 100 μg/mL [163]. The selenochro-

man hybrid 118 demonstrated substantial antifungal 

potency, with MICs ranging from 0.5 to 2 μg/mL 

against fluconazole-resistant strains of Candida albi-

cans, Cryptococcus neoformans, Candida zeylanoides, 

and Aspergillus fumigatus [164]. Pyrimido[4,5-

d]pyridazinone-N-acylhydrazone hybrids, tested 

against Paracoccidioides brasiliensis (Pb18), the caus-

ative agent of paracoccidioidomycosis, showed promis-

ing results. Compound 119 exhibited superior activity 

compared to amphotericin B [165].  

The phenolic natural product dihydrozingerone, 

known for its antioxidant and antibacterial properties, 

when combined with thiazole hydrazine, resulted in 

 

Fig. (14). Benzimidazole, imidazole and imidazoline-derived hybrids. 
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hybrid 120. This compound demonstrated significant 

antifungal activity with an MIC of 1.5 μM and an IC50 

of 0.48 μM against M. tuberculosis H37Rv [166, 167]. 

Thiazolylhydrazone hybrids were further studied for 

their antimycobacterial properties by Bizzarri et al. and 

Ozadali et al. Bizzarri's study, which compared the ef-

fects of these hybrids on 22 Candida isolates with clot-

rimazole, found compound 121 to be highly inhibitory. 

Ozadali's research revealed that another group of hy-

brids had MICs ranging from 1.03 to 72.46 μM against 

M. tuberculosis H37Rv, with compound 122 being the 

most potent, though slightly toxic. Both studies report-

ed that the hybrids exhibited low overall toxicity  

(Fig. 15) [168, 169]. 

5.6. Assorted Antifungals Inhibitory of Candida  

albicans 

Candida albicans, along with related species like C. 

tropicalis, C. parapsilosis, and C. glabrata, is a com-

mon pathogen that forms biofilms and often infects 

immunocompromised individuals, such as those with 

HIV. This yeast is frequently used as a model organism 

for testing potential antifungal agents. Novel alkyl 1H-

azole-1-carbodithioates (compounds 123a-c) have 

demonstrated dual antimicrobial and spermicidal ac-

tivities, inhibiting Trichomonas vaginalis, Candida 

species, and human sperm [170]. Carvacrol-thiourea 

hybrids (e.g., 124), which are known for their role as 

insect growth regulators, also showed potent antifungal 

properties [171]. Indoline and indole-based antifungal 

hybrids, represented by 125, exhibited effective antibi-

ofilm activity [172]. Quinoline-chalcone hybrids (com-

pound 126), when combined with fluconazole, dis-

played promising results against drug-resistant Can-

dida albicans [173]. Among these, compound 127, in 

combination with fluconazole, was the most effective 

against 14 strains of resistant C. albicans, working by 

inducing reactive oxygen species (ROS) accumulation 

and damaging mitochondrial membrane potential 

[174]. Benzamidine-based hybrids, such as compound 

128, offer a novel strategy to restore antifungal activity 

against drug-resistant fungi by counteracting efflux 

pump mechanisms [175]. Purinylthiazolylethanone hy-

brids, exemplified by compound 129, exhibited potent 

 

Fig. (15). Antifungal hybrids derived from thiazoles and hydrazine. 
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inhibition of C. albicans with an MIC of 1 mg/mL. 

This compound was non-toxic, showed no detectable 

resistance, and caused significant bacterial cell mem-

brane damage, leading to protein leakage, increased 

ROS and reactive nitrogen species (RNS), and an over-

all fungicidal effect (Fig. 16) [176]. 

5.7. Assorted Antifungal Hybrids 

Hybrid 130, created by coupling fenfuram and ani-

line fragments, exhibited potent fungicidal activity, 

with EC50 values of 0.223 and 0.037 mg/mL against the 

plant pathogenic fungus Rhizoctonia solani [177]. Hy-

brid 131 showed inhibition of inosine-5′-monophos- 

phate dehydrogenase (IMPDH), highlighting its poten-

tial as an antitubercular agent [178]. The bis-4-

chlorophenyl azetidine-2-one hybrid 132 emerged as 

the most potent antifungal within a series of cinnama-

mide analogs, displaying efficacy against the tomato 

and potato pathogen Alternaria solani [179]. Structure-

activity relationship (SAR) studies on antitubercular 

agents BM212 and SQ109 revealed that incorporating a 

cyclohexylmethyl group into compounds like 133 re-

sulted in more potent candidates [180]. Structural rigid-

ification of early N-phenylpyrroles 134, which were 

active against M. tuberculosis, led to the development 

of indole derivatives. Substituting with lipophilic 

groups produced indole hybrids, such as compound 

135, which exhibited potent activity (MIC 0.96 μg/mL) 

against both M. tuberculosis and drug-resistant isolates 

[181]. Among a series of pyrrole-derived hybrids tested 

against M. tuberculosis, compound 136 was the most 

active, with an MIC of 0.50 μg/mL [182]. Novel ben-

 

Fig. (16). Miscellaneous antifungals. 
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zofuran-isatin conjugates, showing favorable toxicity 

profiles, proved effective against MDR M. tuberculosis 

strains, with hybrids like 137 providing the highest ac-

tivity (Fig. 17) [183, 184]. 

6. ANTITUBERCULAR HYBRIDS 

6.1. Antitubercular Heterocyclic Azole-Derived Hy-

brids 

A range of hybrids incorporating "azole" rings has 

demonstrated promising antitubercular activity. Isonia-

zid, the most effective approved antitubercular drug, 

inhibits 2-trans-enoyl-acyl carrier protein reductase 

(InhA). The free NH2 group in isoniazid has facilitated 

the formation of various hybrids by linking it to differ-

ent functional groups. Compounds 138-145 [185-190] 

have shown efficacy against M. tuberculosis (Mtb) 

strains, including H37Rv and M. marinum. Subsequent 

modifications involved replacing the pyridyl group of 

isoniazid with heterocyclic groups such as pyrrole 146 

[191], benzofuran 147 [189] and other groups like phe-

nyl, thienyl, furyl, and thiadiazolyl 148 [192]. Some 

hybrids containing the isoniazid unit have demonstrat-

ed significant antitubercular activity. For instance, tria-

zole-bridged hybrids 149 exhibited low toxicity and 

potent inhibition of Mtb H37Rv (MIC = 0.78 mg/mL) 

[193]. Hybrids such as 150, which incorporate amino-

quinoline, isoindoline, and isoniazid, displayed promis-

ing antimycobacterial properties against the mc26230 

strain of M. tuberculosis with an MIC of 5.1 μM [194]. 

The CQ-hydrazone-ferrocene hybrid 151, where the 

pyridyl group of isoniazid is replaced with a chloro-

quinolyl group, also demonstrated antitubercular activi-

ty. This suggests that similar hybrids incorporating fer-

rocene and chloroquine (CQ) warrant further investiga-

tion (Fig. 18) [195]. 

6.2. Benzimidazoles and Imidazoles 

Ethionamide (ETH), an isoniazid analog and sec-

ond-line anti-TB drug, along with its derivatives, has 

shown  activity  against  M. tuberculosis  H37Rv,  with  

 

Fig. (17). Assorted antifungal hybrids. 
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Fig. (18). Isoniazid-derived antitubercular conjugates. 
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Fig. (19). Antitubercular hybrids based on benzimidazoles and imidazoles.  

MICs ranging from 0.27 to 2.532 μM. Among these, 

compound 152 was found to be the most potent and 

minimally toxic [196]. Benzimidazole-acrylonitrile 

hybrids, such as compound 153 (MIC = 0.78 mg/mL), 

exhibited superior activity compared to standard drugs 

like isoniazid, ciprofloxacin, rifampicin, and moxiflox-

acin [197]. The methylated chloroquinoline-nitroimida- 

zole conjugate 154 showed promising activity against 

M. tuberculosis, with an MIC of 2.2 μg/mL [198]. Im-

idazolyl dihydropyrimidine hybrids (155) effectively 

reduced M. tuberculosis growth in an infected macro-

phage model, likely through inhibition of dihydrofolate 

reductase [199]. Conjugates 156 and 157, formed by 

coupling imidazopyridines and cephalosporins with 

piperzino-1,3-benzothiazin-4-ones, demonstrated some 

antitubercular activity, though their efficacy was lim-

ited. [200]. Non-toxic quinazoline-benzimidazole hy-

brids 158 provided inhibition of various mycobacterial 

species, including M. tuberculosis H37Rv and M. ab-

scessus ATCC 19977, with MICs ranging from 8 to 16 

μg/mL. Additionally, analogs 159 displayed antibacte-

rial activity against E. coli, K. pneumoniae, A. bau-

mannii, and P. aeruginosa with an MIC of 8 μg/mL, 

while compound 160 inhibited S. aureus with an MIC 

of 4 to 8 μg/mL (Fig. 19) [201]. 
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6.3. Benzoxazoles, Benzofurans, and Benzoxazines 

The benzoxazole-nitrofuranylchalcone hybrid 161 

[202] and its analog 162 [203] exhibited potent inhibi-

tion of M. tuberculosis bacilli. Benzofuran derivatives 

163 and 164 also demonstrated significant antitubercu-

lar activity, though compound 165 was approximately 

ten times less potent [204-206]. Benzofuran-isatin-

imine hybrids 166 showed enhanced antitubercular ac-

tivity (<0.016-0.218 μg/mL) and exhibited promising 

antibacterial effects against both G+ and G- pathogens 

(<0.03-8 μg/mL) [207]. Carbazole-derived hybrids 167 

and 168, obtained from N-methylcarbazoles, displayed 

strong antitubercular activity with low toxicity against 

M. tuberculosis [208-210]. 

6.4. 1,2,4- and 1,3,4-Oxadiazoles, Oxazoles, and 

Thiadiazoles 

Reviews by Degani et al., Verma, and Rakesh et al. 

have highlighted the potential of oxadiazole isomers in 

tuberculosis treatment [210, 211]. The 1,2,4-oxadiazole 

hybrid 169 displayed an MIC of 0.31 μM against M. 

tuberculosis [212]. 1,2,4-Oxadiazole derivatives linked 

to quinoline, such as compound 170, showed promising 

antitubercular activity [213]. Additionally, 1,3,4-oxadi- 

azole hybrids 171, featuring a substituted phenyl group 

attached to the oxadiazole unit, exhibited greater po-

tency against M. tuberculosis compared to those with 

cycloalkyl or heterocyclic rings [214]. Analogous hy-

brids 172 were found active against Mycobacterium 

bovis BCG at concentrations below 3 μg/mL [215]. A 

set of 1,3,4-oxadiazole compounds, represented by 173, 

displayed activity against M. tuberculosis when utiliz-

ing butyrate as a carbon source, but not glucose [216]. 

Further antitubercular 1,3,4-oxadiazole-derived hy-

brids, including 174 and 175, have also been reported 

[217]. Screening of 45,000 compounds led to the dis-

covery of an oxazole hybrid as a potent Mtb inhibitor, 

and further structural modifications produced non-toxic 

hybrids 176 with MICs of 1-64 mg/L against M. tuber-

culosis [218]. Hybrids 177, incorporating imidazo[2,1-

b][1,3,4]thiadiazoles tethered to triazoles, exhibited 

significant activity against M. tuberculosis with an 

MIC of 3.125 μg/mL (Fig. 21) [219]. 

6.5. Pyrazoles, Tetrazoles, and Thiazoles 

Pyrazole derivatives are key components in several 

promising antitubercular hybrid candidates, such as 

compounds 178-181 [220-223]. Non-toxic hybrids 182, 

 

Fig. (20). Hybrids of benzoxazoles, benzofurans, benzoxazines and carbazoles.  
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featuring a methyl tetrazole group, enhanced potency 

as antitubercular agents compared to standard drugs 

like ethambutol and pyrazinamide [224]. Tetrazole de-

rivatives 183, despite showing favorable antifungal 

activity, exhibited high reactivity towards thiol nucleo-

philes, leading to toxicity [225]. Various spiro-derived 

heterocycles, such as dispiroindenopyrrolidine/pyrrolo- 

thiazole-thiochroman hybrids (compound 184), demon-

strated potent antimycobacterial activity against M. 

tuberculosis H37Rv, as well as anticancer activity and 

acetylcholinesterase (AchE) inhibition [226]. Similar 

antitubercular effects were observed with 2-arylidene-

1,3-indanediones 185 [227] and novel spirooxindolpyr-

rolothiazoles 186 [228]. Additional antimycobacterial 

thiazole derivatives, exemplified by 187, also showed 

promise as antitubercular agents [229]. Among hybrids 

incorporating a benzothiazole-hydrazide group, com-

pound 188 emerged as the most effective inhibitor of 

M. tuberculosis H37Rv (Fig. 22) [230]. 

 

 

Fig. (21). Antitubercular conjugates of 1,2,4- and 1,3,4-oxadiazoles, oxazoles and thiadiazoles. 
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Fig. (22). Antitubercular chimeras of pyrazoles, tetrazoles and thiazoles. 

6.6. Triazoles 

While nitro-containing drugs often suffer from high 

toxicity, triazolothiadiazine hybrids, such as compound 

189 (with a -C6H4-4-NO2 substitution), were of low 

toxicity and effectiveness against drug-resistant M. tu-

berculosis strains [231]. Other nitro-derived hybrids, 

e.g., 190, displayed promising antibacterial activity 

against MRSA and effectively inhibited biofilm for-

mation [232]. Triazole-derived hybrids 191-194 exhib-

ited in vitro antitubercular activity against M. tubercu-

losis H37Rv (ATCC 27294), with MICs ranging from 

3.12 to 19.5 μg/mL [233-236]. Hybrid 195, tested 

against Mtb, showed low toxicity with an MIC of 1.56 

μg/mL, and also exhibited antiviral activity against the 

influenza virus A/Puerto Rico/8/34 (H1N1) [237]. Py-

razolo hybrids 196 were effective antituberculars 

against Mycobacterium smegmatis with low cytotoxici-
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ty against the A549 cancer cell line [238]. The naph-

thoquinone-triazole hybrid 197 was active against Mtb 

with an IC50 of 1.87 μM [239]. The diverse antitubercu-

lar and antimicrobial activities of triazole-containing 

hybrids are reflected in various chemical structures, 

including compounds 198-204 [240-246]. For instance, 

a gatifloxacin-fluoroquinolone hybrid 205, tethered via 

a 1,2,3-triazole bridge to indolones, exhibited activity 

against Mtb [247]. A group of synthetic hybrids having 

artemisinin conjugated with a fluoroquinolone (conju-

gate 206) were active against Mtb H37Rv with an MIC 

of 0.0625 μg/mL, comparable to moxifloxacin and 

more potent than ofloxacin [248]. Hybrids linking 

1,2,3-triazole and moxifloxacin fragments were evalu-

ated as inhibitors of Mtb strains, showing activity with 

MICs ranging from 0.05 to 2 μg/mL. Notably, com-

pound 207 displayed potency 2-8 times greater than 

moxifloxacin or rifampicin [249]. Non-toxic diaryleth-

er hybrids, linked via a triazole-containing bridge, such 

as conjugate 208, functioned as direct enoyl-ACP re-

ductase (InhA) inhibitors, like isoniazid, proving effec-

tive against Mtb. Mechanistic studies suggest these hy-

brids disrupt the biosynthesis of mycolic acids in M. 

tuberculosis H37Rv (Fig. 23) [250]. 
 

 
Fig. (23) Contd… 
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Fig. (23). Triazole platform of antitubercular hybrids. 

6.7. Assorted Antitubercular Hybrids  

The active antitubercular compound 1,3-benzothia- 

zinone (BTZ043) has served as a foundation for the 

development of novel and potent dinitro-aryl hybrids, 

such as compound 209 [251]. Additional hybrids were 

synthesized by bridging phthalimido units with phena-

zines, exemplified by compound 210 [252]. The ami-

noquinoline-thiourea hybrid 211 and the acridine hy-

brid with a sulfonamido group (compound 212) were 

identified as non-toxic, potent inhibitors of Mtb DNA 

gyrase supercoiling, affecting both Mycobacterium 

smegmatis GyrB and M. tuberculosis DNA gyrase 

[253, 254]. Compound 213, derived from the coupling 

of isatin with the antiretroviral drug lamivudine, exhib-

ited significant antitubercular properties, with 92-100% 

inhibition against the Mtb H37Rv strain at 6.25 μg/mL, 

alongside its anti-HIV activity [255, 256]. Two fami-

lies of hybrids derived from 2-aminopyrimidines also 

showed antitubercular activity. The non-toxic diaryl 

pyrimidine 214 inhibited α-glucosidase and glycogen 

phosphorylase enzymes in vitro and showed about 58% 

ex vivo activity against Mtb, with an MIC up to 3.12 

μg/mL. This suggests potential efficacy in treating dia-

betic patients with tuberculosis [257]. Among 2-[(2-

amino-6-methylpyrimidin-4-yl)sulfanyl]-N-arylacetam- 

ide hybrids, conjugate 215 was three times more potent 

than the standard antitubercular drug ethambutol [258]. 

In vitro screening of phthalide derivatives against Mtb 

revealed that four compounds had IC50 values ranging 

from 0.81 to 1.24 μg/mL, indicating their potential as 

new antitubercular agents. The enhanced activity of 

compound 216a is attributed to the presence of halogen 

groups, while the improved activity of compound 216b 
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is linked to the substitution of phenyl groups with iso-

steric furan and thiophene rings [259]. Chalcone-

derived hybrids tested against Mtb H37Rv proved that 

compound 217 was the most potent, exhibiting 16 

times greater selectivity for tubercular cells compared 

to normal cells [260]. Compound 218, a (-)-fenchone 

analog linked to a cinnamyl group, exhibited signifi-

cant antitubercular activity with an MIC of 0.3 μg/mL 

[261]. The pyrazine-thiazolidinone hybrid 219 present-

ed limited antitubercular activity, with an IC50 of 0.337 

μg/mL against Mtb H37Ra [262]. The pyrrolo[1,2-

a]quinoxaline tricyclic system served as a basis for the 

design of novel antitubercular compounds. Hybrid 220, 

with an MIC of 5 μg/mL, demonstrated good bioavail-

ability and high permeability across the blood-brain 

barrier [263]. 3-Methoxy-2-phenylimidazo[1,2-b]pyri- 

dazine hybrids 221 were active in vitro against M. tu-

berculosis and Mycobacterium marinum, but were 

found to be inactive in vivo due to rapid metabolism 

[264]. Compound 222, derived from formononetin by 

replacing the OMe group with other substituents, inhib-

ited 95% of the Mtb H37Rv strain (Fig. 24) [265]. 

6.8. Hydrazine- and Hydrazone-Derived Antituber-

cular Conjugates  

Hybrid compounds incorporating guanylhydrazone, 

thiosemicarbazide, or semicarbazide moieties, such as 

substances 223-225, have demonstrated potent inhibi-

tion against fungal, bacterial, and tubercular pathogens. 

Notably, the most active candidates exhibit low toxicity 

and show promising efficacy against MRSA (Fig. 25) 

[266, 267]. 
 

 
Fig. (24) Contd… 
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Fig. (24). Structurally unrelated Mtb inhibitory hybrids.  

 

Fig. (25). Hydrazine- and hydrazone-derived inhibitors of Mtb. 

7. ANTIMALARIAL HYBRIDS 

Compounds developed to treat malaria caused by 

Plasmodium falciparum generally fall into three main 

categories: quinoline derivatives, trioxanes, and ferro-

cene derivatives (Fig. 26). The first category includes 

classic quinoline-based drugs such as the natural prod-

uct quinine and its synthetic analogs-chloroquine (CQ), 

hydroxychloroquine, mefloquine, primaquine, and 

amodiaquine. The second major class consists of triox-

anes, with artemisinin being the most prominent exam-

ple, discovered by Youyou Tu, who was awarded the 

2015 Nobel Prize for her work. Artemisinin has led to a 

variety of analogs, including endoperoxide trioxanes 

such as artemether and artesunic acid. Despite exten-

sive research into the chemistry, biology, and mecha-

nisms of these drugs, their widespread use has contrib-

uted to the development of resistance, prompting the 

need for new therapeutic strategies. As a result, signifi-
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cant attention has shifted to the development of hybrid 

compounds that combine the potent antimalarial activi-

ty of traditional drugs with mechanisms aimed at min-

imizing resistance. Given the urgent need for effective 

treatments, numerous studies have been published, ex-

ploring diverse approaches to discovering novel anti-

malarial agents. Many reviews have focused on the 

development of these hybrid compounds, highlighting 

their potential to overcome existing drug resistance 

while maintaining efficacy against Plasmodium falci-

parum (Fig. 26). 

7.1. Antimalarial Reviews  

A selection of reviews on antimalarial hybrids in-

cludes works by Bell [268]; Muregi and Ishih, who fo-

cused on aminoquinoline hybrids [269]; Aberibghe and 

Alven, who reviewed quinoline and endoperoxide hy-

brids [270] and ferrocene-derived antimalarial hybrids 

[271]. Gao et al. also reviewed ferrocene-derived anti-

malarials [272]. Gómez-Barrio and Kouznetsov con-

centrated on hybrids of 4-amino-7-chloroquinoline, an 

analog of chloroquine [273]. D’hooghe and Van-

dekerckhove summarized numerous antimalarial hy-

brids containing quinoline fragments [274]. Awasthi et 

al. discussed challenges encountered with antimalarial 

hybrids and summarized endoperoxides, including ef-

forts to overcome MDR parasites and toxicity, while 

seeking better pharmacokinetic properties and formula-

tions [275, 276]. Additional reviews by Patel and 

Legoabe focused on synthetic antimalarial peroxides, 

[277] and Maunier specifically reviewed peroxide hy-

brids [278]. Lopes et al. emphasized the significance of 

 

Fig. (26). Clinically approved antimalarial drugs. 
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antimalarial hybrids with different mechanisms of ac-

tion [279], and Qin and Rakesh described hybrids in-

volving chalcone entities [280]. Jain et al. presented 

new hybrid structures with antimalarial activity [281] 

while Hoda and Madhav analyzed clinical targets for 

antimalarial hybrids [282]. Ng and Cheong discussed 

multi-target antimalarial hybrids, referring to their ac-

tivity as “covalent biotherapy” [283]. Reviews dedicat-

ed to specific molecular scaffolds for antimalarial hy-

brids include quinoline [284, 285], indoles [286], β-

carbolines [287], spiral molecules [288] and hybrids 

related to falcipains [289]. Additional general reviews 

of antimalarial hybrids can be found in several sources 

[290-292]. 

7.2. Hybrids of Chloroquine (CQ) and Primaquine 

Derivatives of CQ-chalcone hybrids 226 showed 

enhanced antimalarial activity against both CQ-resis- 

tant P. falciparum (K1) and chloroquine-susceptible 

(3D7) strains, effectively inhibiting in vitro β-hematin 

formation [293]. The non-toxic hybrid 227, termed 

“reverse quinoline,” was orally effective at low nano-

molar concentrations against resistant P. falciparum 

strains [294]. To target different stages of P. falcipa-

rum development, the combined CQ-primaquine hybrid 

228 was tested and showed activity against both asexu-

al and sexual blood stages, as well as P. berghei sporo-

zoites and liver stages [295]. CQ-based hybrids demon-

strated potent in vitro activity against P. falciparum, 

with dimeric hybrid 229 showing IC50 values of 31.3 ± 

4.9 nM and 80.9 ± 14.6 nM against 3D7 and Dd2 

strains, respectively. The CQ-mortiamide hybrid 230 

exhibited an IC50 of 80.1 ± 9.2 nM against the 3D7 

strain, with part of the activity attributed to the cyclic 

peptide portion [296]. A modified CQ hybrid linked to 

a pyrimidine 231 showed comparable activity to CQ 

against D10 and Dd2 strains of P. falciparum [297]. 

Compound 232, a triazolopyrimidine hybrid linked to 

CQ, exhibited an IC50 of 0.2 μM against CQ-resistant 

strains, with potent inhibition of hemozoin formation 

and dihydroorotate dehydrogenase [298]. The CQ-

hydrazine hybrid 233 demonstrated activity against 

malarial blood parasites (Fig. 27a) [299]. 

A click reaction-based synthesis led to conjugates of 

chloroquine linked to isatin and indole units, with the 

most active compound 234 showing an IC50 of 69 nM 

against P. falciparum [300]. β-Carboline-containing 

hermiquin hybrids, such as 235, linked to CQ, exhibit-

ed high antiplasmodial activity against the Pf3D7 strain 

[301-305]. Quinoxaline 1,4-dioxide-N-oxide hybrids 

(236 and 237), containing CQ or primaquine pharma-

cophores, demonstrated potent blood-stage activity and 

were the most active and selective at this stage. The 

primaquine hybrid was particularly effective against 

the exoerythrocytic stages, displaying enhanced liver 

activity against P. berghei.7 [306]. Investigations into 

quinoline-pyrimidine hybrids led to compound 238, 

which showed antiplasmodial properties with an IC50 of 

0.32 ± 0.06 μM [307]. Studies by Rawat et al. on hy-

brid 239 and compound 240 indicated promising anti-

malarial activity [308-311]. Among hybrids derived 

from CQ and a pyrimidine nucleus, compound 241b 

exhibited the lowest IC50 against both CQ-sensitive and 

CQ-resistant strains, through mechanisms involving 

heme and DNA binding. Analogous compounds 241a 

and 241c also showed effectiveness against feline 

coronavirus and herpesvirus [312]. Singh et al. report-

ed that CQ-pyrimidine hybrid 242 had reduced plas-

modial activity [313], while primaquine-pyrimidine 

hybrid 243 exhibited effective blood- and liver-stage 

antiplasmodial effects (Fig. 27b) [314].  

CQ-cyano-substituted pyrimidine hybrids 244 dis-

played antiplasmodial activity against the Dd2 strain 

through inhibition of hemozoin formation [315-316]. 

The 8-aminoquinoline-pyrazolopyrimidine hybrid 245 

demonstrated IC50 values of 5-10 nM against P. falci-

parum [317]. Aminoquinoline-triazine hybrids, report-

ed by Rawat et al. and Chauhan et al., included com-

pound 246, which inhibited P. falciparum clones D6 

and W2 with IC50 values of 0.21 and 0.28 μM, respec-

tively [318-321]. Compound 247 was orally active at 

100 mg/kg for 4 days in Swiss mice infected with the 

CQ-resistant N-67 strain of P. yoelii. Compound 248 

exhibited promising in vivo antimalarial activity against 

P. yoelii via intraperitoneal administration at 50 

mg/kg/day (Fig. 27c). 

Compound 249 displayed an IC50 of 5.23 ng/mL 

against the CQ-sensitive 3D7 strain of P. falciparum 

[322]. An acridine analog of CQ tethered to a substitut-

ed triazine, compound 250, achieved 98.73% inhibition 

of the CQ-resistant N-67 strain of P. yoelii in Swiss 

mice at 100 mg/kg for 4 days [323]. Another acridine 

analog with an amino group at position 4 linked to an 

m-F-cinnamyl group, hybrid 251, was 20- and 120-fold 

more potent against the hepatic and gametocyte stages 

of Plasmodium infection compared to primaquine 

[324]. Compared to CQ, the adamantane amine-chloro- 

quine hybrid 252 showed an 18-fold increase in activity 

against resistant P. falciparum strains [325]. Moderate 

in vitro activity and acceptable cytotoxicity were ob-

served for compound 253 [326]. Amino-analogs 254 of 

kojic acid were effective inhibitors of β-hematin and 

exhibited antiplasmodial activity against both resistant 
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and sensitive strains of P. falciparum [32 823-7 ]. [299]. 

Bridging ciprofloxacin to a CQ derivative yielded a 

potent, non-toxic antimalarial hybrid, compound 255 

[329]. Similar activity was observed for sulfonamide-

CQ hybrids 256 [330]. Novel and potent hybrids 

257a,b, where CQ is bound to substituted naphthyla-

mides, exhibited IC50 values of 15 nM and 0.07 μM 

against CQ-susceptible 3D7 and CQ-resistant W2 

strains of P. falciparum, respectively [3 882-83 ]. Hy-

brids where CQ is linked to various heterocyclic moie-

ties were also reported. Hybrid 258, with CQ linked to 

a thiazolidine ring, and its analogs were better inhibi-

tors of the Dd2 MDR strains of P. falciparum com-

pared to CQ [333]. Compound 259 effectively sup-

pressed 99% parasitemia on day 4 (Fig. 27d) [334]. 

Hybrid 260, which integrates a CQ unit, an isonia-

zid fragment, and a phthalimide, exhibited approxi-

mately an order of magnitude higher potency than CQ 

against the resistant W2 strain of P. falciparum [335]. 

Conjugate 261, composed of a CQ-triazole unit linked 

to a chalcone, showed sub-micromolar IC50 values 

against the D10, Dd2, and W2 strains of P. falciparum 

[336]. Additionally, a range of CQ- and primaquine-

 

Fig. (27a). Extensive variety of hybrids of chloroquine (CQ) and primaquine. 
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derived hybrids, including compounds 262-266, dis-

played notable antimalarial activity. These hybrids 

were effective in vitro against P. berghei, PfFP2, 

PfFP3, Pf3D7, and PfW2, encompassing both CQ-

sensitive and CQ-resistant strains of P. falciparum 

(Fig. 27e) [3 842-87 ]. 

7.3. Quinoline, Quinolone, and Quinolinone Hybrids  

Linking N-hydroxyquinolinones to various aromatic 

residues led to the formation of hybrids 267, which 

presented notable antiplasmodial activity (with IC50 

values in the µM range), as well as antibacterial and 

Fe²⁺-chelation properties [343]. In vitro evaluation of 

quinoline hybrids 268 revealed significant antiplasmo-

dial effects against P. falciparum 3D7 [344]. The chi-

meric hybrid 269, formed by conjugating an anticholes-

terolemic atorvastatin fragment with an aminoquino-

line, exhibited potent antiplasmodial efficacy, with an 

IC50 of 0.40 µM against P. falciparum [345]. Various 

trifluoromethylated quinolines linked to 1,3,4-triazole 

units, represented by hybrid 270, displayed antiplas-

modial activity within a range of 0.083-33.0 µM [346]. 

Brominated 4-quinolones, such as hybrid 271, exhibit-

ed moderate antiplasmodial activity against a chloro-

quine-sensitive (CQS) P. falciparum strain (NF54) 

(Fig. 28) [347]. 

 

Fig. (27b). Extensive variety of hybrids of chloroquine (CQ) and primaquine. 
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Fig. (27c). Extensive variety of hybrids of chloroquine (CQ) and primaquine. 

 
Fig. (27d). Extensive variety of hybrids of chloroquine (CQ) and primaquine. 
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Fig. (27e). Extensive variety of hybrids of chloroquine (CQ) and primaquine. 

 

Fig. (28). Quinoline, quinolone and quinolinone antimalarial hybrids. 
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7.4. Peroxide Antimalarials 

The artemisinin-quinine hybrid 272, which func-

tions more as a prodrug due to its ester linkage, demon-

strated strong inhibitory activity against both the 3D7 

and drug-resistant FcB1 strains of Plasmodium falcipa-

rum, outperforming either artemisinin or a mixture of 

the individual components [348]. Hybrids 273a and 

273b, derived from primaquine and artemisinin, exhib-

ited enhanced antimalarial activity by targeting distinct 

mechanisms of action [349]. Conjugate 274, created by 

linking artemisinin to estrogen, displayed polypharma-

cological activity. It showed superior antiplasmodial 

efficacy compared to chloroquine and artesunic acid 

and outperformed ganciclovir against human cytomeg-

alovirus. Additionally, it inhibited the growth of a 

range of breast tumor cells (including MCF7, MDA-

MB-231, MDA-MB-361, and T47D) and cervical can-

cer cells (HeLa, SiHa, and C33A) [350]. Artesunate-

indoloquinoline hybrids, such as compound 275, 

demonstrated reduced cytotoxicity and enhanced anti-

malarial activity. It exhibited IC50 values of 0.45 nM 

against CQ-sensitive (NF54) strains and 0.42 nM 

against CQ-resistant strains, with a resistance index 

(RI) of 0.93. This hybrid also significantly reduced 

parasitemia by 89.6% and prolonged survival to 7.7 

days [351]. The hybrid 276, formed by linking artemis-

inin to the local antiseptic 9-aminoacridine, when test-

ed against chloroquine-sensitive, gametocytocidal, and 

CQ-resistant strains of P. falciparum, demonstrated 

seven-fold higher anti-gametocytocidal activity com-

pared to chloroquine and was seven times more potent 

against the Dd2 strain. Furthermore, it showed 3- to 8-

fold increased anticancer activity over melphalan in 

HeLa cells (Fig. 29a) [352]. 

The dimeric artemisinin-triazine hybrid 277 exhibit-

ed robust antigametocytocidal activity against the P. 

falciparum NF54 strain, with an IC50 in the nM range, 

and comparable potency to artesunate against the Dd2 

strain [353]. The artemisinin-CQ hybrid 278, in its oxa-

late salt form, outperformed CQ against the chloro-

quine-resistant (CQR) strain of P. falciparum, while 

the artemisinin-CQ dimeric hybrid 279 demonstrated 

high antiplasmodial efficacy [354, 355]. Compound 

280, which combines DHA with an NO-donating unit, 

proved effective in dilating rat aorta and preserving 

antiplasmodial activity in vitro and in vivo against P. 

berghei ANKA. Its effectiveness was comparable to 

artesunate and artemether, and also increased the sur-

vival of mice with late-stage disease [356]. Conjugate 

281, a hybrid of DHA and azidothymidine (AZT), ex-

hibited in vitro antiplasmodial activity like that of DHA 

(IC50 = 26 nM) and moderate HIV activity (IC50 = 2.9 

µM) without cytotoxicity to HeLa cells [357]. Dual-

acting hybrids like 282 and 283 (comprising artemis-

inin and vinyl phosphonate) and 284 (linking artemis-

inin and vinyl sulfone) showed potent antimalarial effi-

cacy against various sensitive and resistant P. falcipa-

rum strains with EC50 values in the nanomolar range. 

The antifalcipain-2 activity from the vinyl peptide 

pharmacophore boosted the antiplasmodial efficacy of 

artemisinin. These hybrids cleared parasitemia in in-

fected mice and provided complete protection, extend-

ing survival beyond 60 days. Compounds 282 and 283 

also demonstrated synergistic effects and a lower like-

lihood of inducing resistance. Their diastereomers ex-

hibited potent in vitro antiplasmodial activity (Fig. 

29b-c) [358-359]. 

Hybrid 285, formed by coupling (2R,3S)-N-

benzoyl-3-phenylisoserine with artemisinin, displayed 

nanomolar antiplasmodial IC50 values [360]. The arte-

misinin-quinone hybrid 286 exhibited better polyphar-

macological properties than artemisinin and thymoqui-

none alone, showing activity as antimalarial, antiviral, 

and antileukemic agents [361]. Hybrid 287, combining 

an adamantyl-1,2,4-trioxalane unit with CQ, was more 

potent than both CQ and artemisinin against the 3D7 

and K1 strains of P. falciparum [362]. Tetraoxane en-

doperoxides have been developed into various hybrids 

to combat P. falciparum resistance. Notable dual-acting 

hybrids, such as 288, which integrates an endoperoxide 

with a vinyl sulfone inhibitor (IC50 = 175±15.1 nM) 

targeting cysteine protease falcipain, reduced para-

sitemia and increased survival in mice infected with P. 

berghei [363]. Similarly, hybrid 289, featuring a toxic 

tetraoxane endoperoxide linked to a pyrimidine falci-

pain inhibitor, also reduced parasitemia and improved 

survival in infected mice [364]. The amidic hybrid 290, 

synthesized from a tetraoxane and primaquine, effec-

tively cleared P. berghei infection in mice following 

intraperitoneal administration (Fig. 29c) [365, 366]. 

The endoperoxide 291, combined with artemisinin, 

produced compound 292, the most potent antimalarial 

combination against chloroquine-resistant P. falcipa-

rum [367]. Synthetic trioxaquine hybrids, exemplified 

by compound 293, which links a trioxane unit to an 

aminoquinoline fragment, showed potent antiplasmodi-

al activity with IC50 values ranging from 4 to 32 nM 

against both asexual and sexual stages of P. falcipa-

rum. In vivo, they were effective against P. vinckei pet-

teri and P. yoelii nigeriensis strains [368]. Several nov-

el trioxane-coumarin hybrids 294, though limited in 

solubility, were active against the CQ-sensitive 3D7 

strain of P. falciparum [369]. Linking artemisinin to 
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the plant metabolite egonol resulted in hybrid 295, 

which exhibited potent antimalarial, antiviral, and an-

tileukemic activities [370]. Trioxaferroquines, such as 

compound 296, represent a new class of antimalarial 

hybrids that combine a trioxane peroxide unit with a 

CQ fragment. These hybrids in vitro were efficacious 

against resistant P. falciparum strains, and treatment of 

mice infected with P. vinckei petteri resulted in unde-

tectable parasite levels with a low dose of 296 (Fig. 

29d) [371]. 

 

Fig. (29a). Artemisinin-inspired peroxide structures of antimalarial conjugates. 

 

Fig. (29b). Artemisinin-inspired peroxide structures of antimalarial conjugates. 
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Fig. (29c). Artemisinin-inspired peroxide structures of antimalarial conjugates. 

 

Fig. (29d). Artemisinin-inspired peroxide structures of antimalarial conjugates. 
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Fig. (30). Ferrocene-based antimalarial hybrids. 

7.5. Ferrocene-Derived Antimalarial Hybrids 

Ferroquine, a hybrid derived from chloroquine (CQ) 

and ferrocene, is the most advanced compound in clini-

cal trials. It has shown no in vivo toxicity and proved 

effective against CQ-resistant Plasmodium falciparum. 

[372, 373]. Ferrocene-CQ hybrids, such as compound 

297, where the CQ moiety is linked to both rings of 

ferrocene, are active against both CQ-sensitive and 

CQ-resistant parasite strains [374]. Hybrids combining 

artemisinin with a ferrocenic nucleus, like compounds 

298 and 299, also afforded promising antimalarial ac-

tivity [375, 376]. Thiosemicarbazone-ferrocene-amino- 

quinoline hybrids (e.g., compound 300), which are ca-

pable of coordinating metal ions, were developed with 

the aminoquinoline fragment playing a key role in their 

antimalarial efficacy [377]. The novel ferrocene-

containing compound 301, though water-insoluble and 

unstable, represents an example of a compound with a 

distinct mechanism of action compared to CQ [378]. 

Triple hybrids 302a and 302b, derived from disubsti-

tuted ferrocene linked to either glucofuranose or galac-

topyranose and to mefloquine or CQ fragments, exhib-

ited low activity against both D10 (CQ-sensitive) and 

Dd2 (CQ-resistant) strains [379]. CQ hybrids linked to 

1,3-thiazolidin-4-one units and ferrocenyl groups, such 

as structure 303, showed antiplasmodial activity as well 

as antibacterial properties against G+ Staphylococcus 

aureus and Bacillus cereus, with MIC values ranging 

from 3 to 12 mg/mL (Fig. 30) [380]. 
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7.6. Assorted Antimalarial Hybrids 

Like antitubercular hybrids, antimalarial hybrids en-

compass a broad range of structurally diverse com-

pounds. Most of these hybrids have been primarily 

tested in vitro, demonstrating potent antiplasmodial 

activity against Plasmodium falciparum, including its 

drug-resistant strains. However, only a few have been 

evaluated in vivo, and those that were tested did not 

progress to clinical trials. For instance, the novel anti-

malarial hybrid 304, which links a stilbene to a chal-

cone, exhibited IC50 values of 2.2, 1.4, and 6.4 μM 

against the 3D7 (CQ-sensitive), Indo, and Dd2 (CQ-

resistant) strains of P. falciparum, respectively. In 

comparison, the individual stilbene (IC50 > 100 μM) 

and chalcone (IC50 = 11.5 μM), or their equimolar mix-

ture (IC50 = 32.5 μM), were significantly less potent 

than hybrid 304 [381]. Additionally, the amidoxime-

thiazolium hybrid 305 showed enhanced oral antima-

larial activity [382]. Indole-derived hybrids, such as 

those based on pyrimethamine analogs 306, were found 

to be ten times more potent than pyrimethamine itself, 

which had been previously discontinued due to re-

sistance issues [383]. The tetracyclic hybrid 308, de-

rived from a thionolactone-isatin combination 307, 

demonstrated strong activity against the chloroquine-

resistant W2 strain of P. falciparum [384]. Hybrids 

combining coumarin and pyrazoline units, like com-

pound 309, effectively inhibited both sensitive (MRC-

02) and resistant (RKL9) strains of malaria parasites 

(Fig. 31a) [385]. 

Furthermore, a number of structurally diverse hy-

brids 310-315 [386-391] have been reported to exhibit 

antimalarial properties, including inhibition of both 

CQ-sensitive strains (3D7, Pf3D7, RKL-9) and re-

sistant strains (RKL9, Pf3K1, W2). Some of these 

compounds also enhanced survival in a murine model 

of P. berghei ANKA and displayed anticancer activity 

against A549 and MDA-MB-231 cell lines (Fig. 31b). 

 

 

 

Fig. (31a). Assorted antimalarial hybrids of unrelated structures. 
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Fig. (31b). Assorted antimalarial hybrids of unrelated structures. 

CONCLUSION 

The literature on hybrid compounds primarily fo-

cuses on antimicrobial hybrids designed to treat wide-

spread diseases such as malaria, fungal infections, and 

tuberculosis. Other hybrids aim to fill the significant 

gap in clinically effective treatments for certain diseas-

es. While hundreds of hybrids have demonstrated in 

vitro activity against a range of microbial targets, only 

a few have been tested in vivo, and even fewer have 

progressed to clinical trials. Additionally, due to the 

vast structural diversity within each category of hybrids 

and the broad variety of microbes across different para-

sitic groups, it is nearly impossible to make meaningful 

comparisons of activity between these hybrids. 
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