

Parasitology | Full-Length Text

Identification and characterization of thiamine analogs with antiplasmodial activity

Imam Fathoni, ¹ Terence C. S. Ho, ² Alex H. Y. Chan, ² Finian J. Leeper, ² Kai Matuschewski, ³ Kevin J. Saliba¹

AUTHOR AFFILIATIONS See affiliation list on p. 13.

ABSTRACT Thiamine is metabolized into thiamine pyrophosphate (TPP), an essential enzyme cofactor. Previous work has shown that oxythiamine, a thiamine analog, is metabolized by thiamine pyrophosphokinase (TPK) into oxythiamine pyrophosphate within the malaria parasite Plasmodium falciparum and then inhibits TPP-dependent enzymes, killing the parasite in vitro and in vivo. To identify a more potent antiplasmodial thiamine analog, 11 commercially available compounds were tested against P. falciparum and P. knowlesi. Five active compounds were identified, but only N3-pyridyl thiamine (N3PT), a potent transketolase inhibitor and candidate anticancer lead compound, was found to suppress P. falciparum proliferation with an IC₅₀ value 10-fold lower than that of oxythiamine. N3PT was active against P. knowlesi and was >17 times less toxic to human fibroblasts, as compared to oxythiamine. Increasing the extracellular thiamine concentration reduced the antiplasmodial activity of N3PT, consistent with N3PT competing with thiamine/TPP. A transgenic P. falciparum line overexpressing TPK was found to be hypersensitized to N3PT. Docking studies showed an almost identical binding mode in TPK between thiamine and N3PT. Furthermore, we show that [3H]thiamine accumulation, resulting from a combination of transport and metabolism, in isolated parasites is reduced by N3PT. Treatment of P. berghei-infected mice with 200 mg/kg/day N3PT reduced their parasitemia, prolonged their time to malaria symptoms, and appeared to be non-toxic to mice. Collectively, our studies are consistent with N3PT competing with thiamine for TPK binding and inhibiting parasite proliferation by reducing TPP production, and/or being converted into a TPP antimetabolite that inhibits TPP-dependent enzymes.

KEYWORDS malaria, *Plasmodium falciparum*, *Plasmodium knowlesi*, *Plasmodium berghei*, N3PT, thiamine analogs, antiplasmodial agents, vitamin B₁

Malaria is a significant disease in Africa, several countries in Asia, and in Central and South America. In 2022, malaria infected approximately 249 million people and caused 608,000 deaths (1). The spread of antimalarial drug resistance has been rapid and extensive (2, 3). The limited availability of antimalarials has prompted researchers to develop new treatments (4, 5). During its intraerythrocytic asexual replication, which is exclusively responsible for the clinical symptoms, *Plasmodium* requires various vitamins as cofactors for biochemical processes (6). While nutrients such as amino acids and glucose are obtained from the host plasma or erythrocyte (7), thiamine 1 (vitamin B₁) can either be synthesized by the parasite itself (8) or acquired from the host. Thiamine 1, being positively charged, is transported into the cytoplasm, where it is converted into the cofactor thiamine pyrophosphate (TPP) 2 by thiamine pyrophosphokinase (TPK; PF3D7_0924300) (Fig. 1). The important role of *Pf*TPK is highlighted by a "likely essential" score in a genome-wide piggyBac transposon mutagenesis screen (9). TPP 2 functions as an essential cofactor for multiple TPP-dependent enzymes, including pyruvate dehydrogenase E1 subunit (EC: 1.2.4.1; PF3D7_1124500; PF3D7_1446400) and

Editor Audrey Odom John, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA

Address correspondence to Kevin J. Saliba, kevin.saliba@anu.edu.au.

Terence C. S. Ho and Alex H. Y. Chan contributed equally to this article.

The authors declare no conflict of interest.

See the funding table on p. 14.

Received 22 July 2024 Accepted 28 September 2024 Published 29 October 2024

Copyright © 2024 American Society for Microbiology. All Rights Reserved.

FIG 1 Structures of thiamine, TPP, and their analogs. Key moieties, the thiazolium, triazole, and thiophene rings, are indicated by the arrows. Activity of compounds 5 and 6 against pyruvate oxidase and compounds 7 and 8 against pyruvate dehydrogenase is shown. The reported antiplasmodial activities of compounds 7 and 8 are also included. The common substructure between compounds 7 and 8 is highlighted in blue.

1-deoxy-D-xylulose 5-phosphate synthase (EC: 2.2.1.7; PF3D7_1337200) both located in the apicoplast, oxoglutarate dehydrogenase E1 subunit/alpha-ketoglutarate dehydrogenase (EC: 1.2.4.2; PF3D7_0820700) and branched-chain alpha ketoacid dehydrogenase E1a subunit (EC: 1.2.4.4; PF3D7_1312600) both located in the mitochondrion, and transketolase (EC: 2.2.1.1; PF3D7_0610800) located in the cytoplasm (10–15). Due to the important roles of these enzymes in cellular metabolism, the thiamine/TPP utilization pathway is a promising antimalarial target (16).

Several thiamine analogs with potent antiplasmodial activity have been reported. Oxythiamine 3 is a thiamine analog, where the amino group on the pyrimidine ring is replaced by a hydroxyl group (Fig. 1). Oxythiamine 3 possesses antiplasmodial activity, both *in vitro* and *in vivo*, and has been used to validate the thiamine utilization pathway as an antimalarial drug target (15). As with 1, 3 is activated by TPK into its pyrophosphate form, oxythiamine pyrophosphate (OxPP; Fig. 1) 4. Occupying the cofactor pocket (with its PP moiety) but lacking catalytic activity (due to its modified pyrimidine ring), 4 is an inhibitor of TPP-dependent enzymes (17). Previous work has shown that at least two TPP-dependent enzymes may be inhibited by oxythiamine 3 (after conversion to OxPP 4) as part of its mechanism of action against *P. falciparum* parasites (15).

Replacing the positively charged thiazolium ring of TPP with a neutral ring abolishes the catalytic capability, and we have shown that the resultant TPP analogs are potent inhibitors of TPP-dependent enzymes (18-20). While TPP analogs 5 and 6 are structurally similar (Fig. 1), changing the central ring from triazole to thiophene can lead to >80-fold increase in enzyme inhibition (18). Thiamine analogs 7 and 8, bearing a common substructure (as highlighted in blue in Fig. 1), are both potent enzyme inhibitors; however, only 7, featuring a hydroxamate tail group, inhibited P. falciparum parasite proliferation (19, 20). Our recent findings collectively suggest that despite being structurally similar, various analogs of 1 and 2 can have disparate biological activities, highlighting the importance of even subtle changes. Therefore, in this study, we investigated the antiplasmodial activity of a range of thiamine analogs in the hope of discovering an on-target thiamine analog with improved properties compared to 3.

MATERIALS AND METHODS

The following thiamine analogs were purchased from Toronto Research Chemicals Canada or Sigma Aldrich: fursultiamine, cycotiamine, dibenzoyl thiamine, beclotiamine, oxo thiamine, thiotiamine, bisbentiamine. N3-pyridyl thiamine (N3PT) was purchased from MedChemExpress. Allithiamine and acetiamine were kindly provided by the Developmental Therapeutic Programs Cancer of the USA.

Parasite culture

The human malaria parasite P. falciparum strain 3D7 (chloroquine sensitive) and the same strain expressing an extra copy of TPK with a GFP-tag (PfTPK-GFP) were maintained in the intraerythrocytic stage essentially as described previously (21). The macaque malaria parasite P. knowlesi strain H1 (adapted to human serum) was also maintained in the same way as P. falciparum, except that the culture medium was supplemented with 10% heat-inactivated, pooled human serum (22). Fresh human erythrocytes (blood type O+) were added when parasites were in the trophozoite stage. The parasite cultures were maintained at 37°C inside a shaking incubator and under an atmosphere of 1% oxygen, 3% carbon dioxide, and 96% nitrogen.

In vitro antiplasmodial activity assay

Compounds were tested at different highest final concentrations (between 12.5 and 350 μM) depending on their solubility. Stock solutions of the compounds were prepared in dimethyl sulfoxide (DMSO) or water, followed by dilution in RPMI 1640 medium in the absence of thiamine (formulated in-house from the individual components of RPMI 1640, excluding thiamine) or in the presence of 2.97 µM (the concentration normally present in RPMI 1640) or 297 µM thiamine. The final concentration of DMSO that the parasites were exposed to never exceeded 0.05%, a concentration that has no effect on parasite proliferation (23). Four analogs (fursultiamine, cycotiamine, allithiamine, and ethyl thiamine) in addition to oxythiamine 3 and N3PT 9 were further investigated for their antiplasmodial activity against P. knowlesi in the presence of 2.97 µM thiamine. Twofold serial dilutions were performed, with each concentration tested in triplicate. The assay was performed as described, with some modifications (24). Experiments were initiated with parasites in the ring stage with a parasitemia of 0.5% (P. falciparum) and mixed stage with a parasitemia level of 1% (P. knowlesi) and a hematocrit of 1%. For experiments designed to allow comparison of the activity of the compounds against P. falciparum and P. knowlesi, asynchronous P. falciparum cultures were used to mimic those of P. knowlesi. Chloroquine (0.5 µM) was used as the positive control (i.e., complete inhibition of parasite proliferation), and parasites maintained in the absence of any inhibitor represented 100% parasite proliferation. The final volume in each well was 200 µL. Plates were incubated at 37°C under an atmosphere of 96% nitrogen, 3% carbon dioxide, and 1% oxygen.

Parasite proliferation was measured using the SYBR-Safe assay (25), which correlates fluorescence intensity to parasite DNA. Oxythiamine, fursultiamine, and allithiamine appeared to be incompatible with this fluorescence-based assay (there were inconsistent fluorescence intensity readings at some concentrations). For these compounds, the Malstat assay was therefore used instead. The Malstat assay correlates parasite lactate dehydrogenase activity with parasite proliferation during the incubation period (96 h for *P. falciparum* and 54 h for *P. knowlesi*) (26). The concentration at which the compound suppresses parasite proliferation by 50% (IC₅₀) was determined from non-linear regression plots using GraphPad Prism. The data were averaged from three independent experiments.

Generation of parasites expressing PfTPK-GFP

The generation of parasites expressing a copy of *Pf*TPK tagged to GFP, in addition to the endogenous *Pf*TPK, was described previously (20). The transgenic parasites were maintained under WR99210 (10 nM) pressure.

Cytotoxicity evaluation of selected compounds

Cytotoxicity testing of selected compounds was conducted using human foreskin fibroblasts (HFF) as described (27), with some modifications. Dulbecco's Modified Eagle's Medium with 10% heat-inactivated fetal bovine serum was used for the assay. Briefly, the HFF cells were seeded in 96-well plates at a density of about 25×10^4 cells/mL. Cycloheximide (10 μ M; a protein synthesis inhibitor) was used as a control to indicate complete inhibition of HFF cell proliferation. Plates were incubated at 37°C in a humidified, 5% carbon dioxide incubator for 96 h. A sample of the supernatant (150 μ L) was then carefully aspirated from each well and discarded. The plates were then stored at -80° C. SYBR-Safe assay was used to measure cell proliferation. Briefly, the plates were thawed, and SYBR-Safe lysis solution (150 μ L) was added to each well and mixed via pipetting to ensure the HFF cells were detached from the plate and lysed. The plates were then processed as described for the antiplasmodial assay.

Radioactive thiamine uptake assay

[³H]Thiamine accumulation (a combination of thiamine transport and its metabolism into TPP) was measured using a method previously applied for other vitamins (28, 29), with some modifications. *P. falciparum* trophozoites were isolated from erythrocytes using 1% saponin. The isolated parasites were washed twice in 50 mL malaria saline (125 mM NaCl, 5 mM KCl, 25 mM HEPES, 20 mM glucose, 1 mM MgCl₂, pH adjusted to 7.1). On average, the number of cells used was 0.8×10^8 cells/mL. [³H]Thiamine, with a final concentration of 0.2 μCi/mL (200 nM), was added to the cell suspension. At predetermined time points (over 30 min), 200 μL of the mixture was added to an oil mix (a 5:4 mix of dibutyl phthalate:dioctyl phthalate). The mixture was centrifuged, washed three times, lysed with 0.1% triton X-100, and precipitated with 5% trichloroacetic acid. A 20 μL aliquot of the supernatant of the first time point was taken to determine the concentration of radioactivity in the extracellular solution. The uptake of [³H]thiamine was expressed as CPM_{in}/CPM_{out}, defining the concentration of [³H]thiamine (and [³H]TPP generated by the parasite) inside the cell relative to that outside of the cell.

Computational docking

The docking of N3PT 9, oxythiamine 3, and thiamine 1 to the *Pf*TPK AlphaFold model (AF-Q14RW4-F1) was performed using the CCDC GOLD docking program. To identify the binding pockets and generate a holoenzyme, the model was superimposed onto a holoenzyme of mouse TPK (PDB:2f17), with a metal ion and products of TPK (AMP and pyrithiamine pyrophosphate, an analog of thiamine pyrophosphate that had been used in the crystal structure determination). The thiamine pyrophosphate-binding site was subsequently used to dock 1, 3, and 9, while the AMP-binding site was used to dock

Month XXXX Volume 0 Issue 0 10.1128/aac.01096-24 **4**

Downloaded from https://journals.asm.org/journal/aac on 05 November 2024 by 2c0f:fe38:2185:4112:b566:dccc:5a2e:9cbd

ATP. ATP, 1, 3, and 9 were generated using CCDC Mercury. The genetic algorithm runs were conducted with a set of 50 runs. Early termination was not allowed during these runs. To replicate their binding positions, the compounds were subjected to similarity and scaffold constraints based on the original ligands. The docking scoring and rescoring methods employed for analysis were CHEMPLP and GoldScore, respectively (30, 31). For molecular docking using CCDC GOLD, the best-performing ligand from each compound series was chosen as a representative.

In vivo antimalarial activity assay

Female Swiss mice (8 weeks old) were used for this experiment. The study was conducted in strict accordance with the German "Tierschutzgesetz in der Fassung vom 22. Juli 2009" and Directive 2010/63/EU of the European Parliament and Council, which focuses on the protection of animals used for scientific purposes. To assess the effectiveness of N3PT 9 in suppressing parasite proliferation in mice, Peter's 4-day suppression test was used (32). To induce infection, naive mice were injected intravenously with 1×10^4 P. berghei parasites, ANKA strain, obtained from an infected donor mouse. The mice were then divided into three groups, each consisting of three individuals. Two hours post-infection, one group received 100 mg/kg and a second group received 200 mg/kg of N3PT 9 dissolved in 100 µL phosphate-buffered saline (PBS) via intraperitoneal injection. The third group of infected mice served as the control and was administered with 100 µL PBS as a vehicle control. Repeat doses were given at intervals of 24, 48, and 72 h after the initial dose. Throughout the duration of the experiment, any signs of toxicity, such as changes in movement and body weight, were monitored and recorded daily. Forty-eight hours after the final drug administration, a small amount of blood was collected from the tail of each mouse to prepare Giemsa-stained slides. The parasitemia of the mice was determined by counting a minimum of 500 erythrocytes. The counting was carried out in a blinded fashion—which parasitemia belonged to which group was only revealed once the counting had been complete.

Statistical analysis

Statistical differences were determined using paired or unpaired, two-tailed Student's *t*-tests, as appropriate. Comparison of mouse weight loss over time between the different groups was carried out using analysis of covariance (ANCOVA).

RESULTS

In vitro antiplasmodial activity and cytotoxicity

Twelve thiamine analogs, oxythiamine 3 and 9–19, were tested against the chloroquinesensitive strain (3D7) of P. falciparum in the absence or presence of different extracellular thiamine concentrations (Fig. S1). Alongside oxythiamine 3 [consistent with previous observations (15)], N3PT 9, fursultiamine 10, allithiamine 11, cycotiamine 12, and ethyl thiamine 13 possessed antiplasmodial activity at the concentrations tested (Table 1). N3PT 9 exhibited significantly more potent inhibition of parasite proliferation compared to oxythiamine 3 at all the extracellular concentrations of 1: 14-fold lower IC50 in thiamine-free medium (P = 0.04, paired t-test), 62-fold lower in the presence of 2.97 µM thiamine (P = 0.0006, paired t-test), and 58-fold lower in the presence of 297 μ M thiamine (P = 0.001, paired t-test). Increasing the extracellular thiamine concentration from 0 to 297 µM reduced the antiplasmodial activity of both 3 and 9, but to different degrees, with oxythiamine 3 showing a 986-fold reduction in activity and N3PT 9 having its activity reduced 220-fold (Table 1; Fig. S2). However, increasing the extracellular thiamine concentration has no effect on the antiplasmodial activity of compounds 10-13, consistent with them acting via a mechanism unrelated to thiamine utilization. Compounds 9-13 were then tested against P. knowlesi, a surrogate of P. vivax (33), the second most important Plasmodium species in terms of morbidity and mortality (34). All the compounds except for 13 inhibited the proliferation of P. knowlesi, albeit with IC50

TABLE 1 Antiplasmodial activity of the thiamine analogs against *P. falciparum* and *P. knowlesi*, and their cytotoxicity against HFF cells^a

	P. falciparum		P. knowlesi	
			1. KITOVIESI	HFF cells
Extracellular thiamine concentration (μM)				
0	2.97	297	2.97	11.6
5.5 ± 0.8	5,425 ± 150	5,559 ± 177	10,800 ± 450	Not tested
0.4 ± 0.1	88 ± 11	96 ± 14	91 ± 10	>200
ЭН				
12.0 ± 0.3	12.0 ± 0.3	12.0 ± 0.6	23 ± 6	38 ± 7
75 ± 22	80 ± 26	85 ± 27	84 ± 5	30 ± 15
H //				
52±9 O	53 ± 11	59 ± 16	143 ± 5	>200
123 ± 9	127 ± 10	176 ± 22	>1,000	>1,000
Inactive at 12.5 μM ,Ph	Inactive at 12.5 μM	Inactive at 12.5 μM	Not tested	Not tested
Inactive at 325 μM	lnactive at 325 μM	Inactive at 325 μM	Not tested	Not tested
	0.4 ± 0.1 OH 12.0 ± 0.3 75 ± 22 H 52 ± 9 OH Inactive at 12.5 μM Ph	0.4 ± 0.1 88 ± 11 0.4 ± 0.3 12.0 ± 0.3 75 ± 22 80 ± 26 H 52 ± 9 53 ± 11 0.4 Inactive at 12.5 μM Inactive at 12.5 μM Ph	0.4 ± 0.1 88 ± 11 96 ± 14 H 12.0 ± 0.3 12.0 ± 0.3 12.0 ± 0.6 75 ± 22 80 ± 26 85 ± 27 52 ± 9 53 ± 11 59 ± 16 123 ± 9 127 ± 10 176 ± 22 OH Inactive at 12.5 μM Inactive at 12.5 μM Inactive at 12.5 μM	0.4 ± 0.1 88 ± 11 96 ± 14 91 ± 10 9

(Continued on next page)

TABLE 1 Antiplasmodial activity of the thiamine analogs against P. falciparum and P. knowlesi, and their cytotoxicity against HFF cells^a (Continued)

	P. falciparum		P. knowlesi	HFF cells	
	Fytracellular				
	Extracellular thiamine concentration (μM)				
	2.97	297	2.97	11.6	
active at 150 μM	lnactive at 150 μM	Inactive at 150 μM	Not tested	Not tested	
active at 200 μM	lnactive at 200 μM	Inactive at 200 μM	Not tested	Not tested	
active at 200 μM	Inactive at 200 μM	Inactive at 200 μM	Not tested	Not tested	
active at 325 μM	Inactive at 325 μM	Inactive at 325 μM	Not tested	Not tested	
	active at 200 μM active at 200 μM	Practive at 150 μM Inactive at 150 μM Inactive at 200 μM Inactive at 200 μM Inactive at 200 μM Inactive at 200 μM	ractive at 150 μM Inactive at 150 μM Inactive at 150 μM ractive at 200 μM Inactive at 200 μM Inactive at 200 μM ractive at 200 μM Inactive at 200 μM Inactive at 200 μM	ractive at 150 μM Inactive at 150 μM Inactive at 150 μM Not tested ractive at 200 μM Inactive at 200 μM Inactive at 200 μM Not tested ractive at 200 μM Inactive at 200 μM Inactive at 200 μM Not tested	

^aData are averaged from three independent experiments, each carried out in triplicate. Errors represent SEM.

values, in general, being higher than those against P. falciparum (Table 1; Fig. S2). They were then also tested against HFF cells to determine if they are cytotoxic. While 10 and 11 showed low micromolar activity against HFF cells, compounds 9, 12, and 13 were not cytotoxic (Fig. S3).

Effect of TPK overexpression on parasite sensitivity to thiamine analogs

To determine whether the mode of antiplasmodial action is dependent on TPK, compounds were tested against a P. falciparum cell line (termed PfTPK-GFP), which expresses a GFP-tagged copy of TPK, in addition to the endogenous TPK. In both thiamine-free and thiamine-replete conditions, the PfTPK-GFP cell line was hypersensitive to oxythiamine 3 when compared to control parasites transfected with a plasmid expressing only GFP (termed Pf3D7-GFP; Fig. 2), consistent with previous observations (15). Having confirmed that the PfTPK-GFP cell line was behaving as expected, a few analogs (9, 10 and 12) were selected, based on their antiplasmodial activity and structural modifications, and tested against these parasites. Fursultiamine 10 and cycotiamine 12 were equally active against the PfTPK-GFP cell line as they were against the control parasites (Fig. S4), consistent with TPK not playing a role in the antiplasmodial activity of these compounds. In contrast, and as observed previously for oxythiamine 3 (15), N3PT 9 was more active against the PfTPK-GFP cell line under thiamine-free conditions (IC₅₀ = 0.05 \pm 0.02 μ M) when compared to Pf3D7-GFP parasites (IC₅₀ = $0.36 \pm 0.03 \, \mu M$, P = 0.002, unpaired t-test), although the effect was somewhat less pronounced than that observed with oxythiamine 3 (7-fold vs 13-fold) (Fig. 2). However, in the presence of 297 µM thiamine, the potency of N3PT 9 against both parasite lines

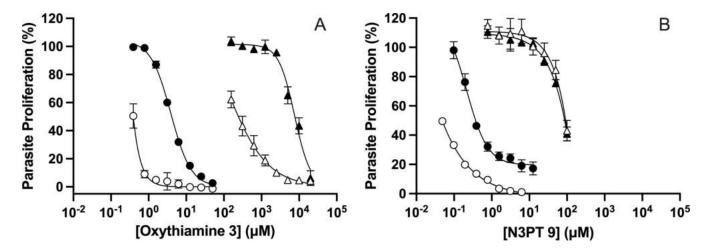


FIG 2 Antiplasmodial activity of oxythiamine 3 (A) and N3PT 9 (B) against *Pf*TPK-GFP (white symbols) and *Pf*3D7-GFP (black symbols). The experiments were carried out in thiamine-free medium (circles) or medium containing 297 μM thiamine (triangles). Data are averaged from three independent experiments, each carried out in triplicate. Error bars represent SEM and, where not visible, are smaller than the symbols.

was comparable (*Pf*TPK-GFP: IC₅₀ = 93 \pm 4 μ M; *Pf*3D7-GFP: IC₅₀ = 98 \pm 2 μ M, *P* = 0.13 , unpaired *t*-test), unlike what we observed with oxythiamine **3** (*Pf*TPK-GFP: IC₅₀ = 275 \pm 59 μ M; *Pf*3D7-GFP: IC₅₀ = 8,220 \pm 267 μ M, *P* = 0.0004, unpaired *t*-test) (Fig. 2).

The effect of oxythiamine 3 and N3PT 9 on [3H]thiamine accumulation

A [³H]thiamine accumulation assay was conducted to investigate the effects of compounds **3** and **9** on thiamine uptake into the parasite and its subsequent metabolism into TPP **2** (and any other thiamine-derived metabolites). In the absence of the analogs, isolated parasites accumulated [³H]thiamine and thiamine metabolites at a rate of 0.8 \pm 0.3 CPM_{in}/CPM_{out} per minute (measured in the linear part of the time course, 5–30 min). The presence of 100 μ M N3PT **9** and a higher concentration of oxythiamine **3** (500 μ M; chosen due to its lower antiplasmodial potency when compared to **9**) significantly reduced [³H]thiamine/metabolite accumulation in isolated parasites by more than threefold (0.2 \pm 0.04 and 0.21 \pm 0.02 CPM_{in}/CPM_{out} per minute, respectively, $P \leq$ 0.04, paired t-test, Fig. 3). These data are consistent with compounds **3** and **9** reducing [³H]thiamine/metabolite accumulation by competing with **1** for thiamine transporters and/or metabolism by TPK.

Docking of oxythiamine 3 and N3PT 9 into the active site of PfTPK

Since N3PT 9 only has a small structural modification in the aminopyrimidine ring when compared to thiamine, computational docking was performed to determine whether it is likely to bind in the active site of PfTPK, supporting the data observed in Fig. 3. With no structure of PfTPK available from either crystallography or cryo-EM, an AlphaFold model (AF-Q14RW4-F1) was used. The model is an apoenzyme consisting of only the tertiary structure of the protein. To identify the binding pockets and generate a holoenzyme with its substrate, the model was superimposed onto a holoenzyme of mouse TPK (PDB:2f17), which has a sequence identity with PfTPK of 33.5%, and has a metal ion, AMP, and pyrithiamine pyrophosphate, an analog of thiamine pyrophosphate, all bound (35) (Fig. 4A). The thiamine pyrophosphate-binding site was subsequently used to dock thiamine 1, oxythiamine 3, and N3PT 9, while AMP was docked into the AMP pocket (Fig. 4B through D). N3PT 9 has been shown to be converted into N3PT pyrophosphate by the human TPK resulting in inhibition of transketolase activity in human colon cancer cells (36). Similarly, oxythiamine 3 is a known substrate of PfTPK (15), and it is oxythiamine pyrophosphate that is likely toxic to parasites. The docking results (Fig. 4) showing that N3PT 9, thiamine, and oxythiamine 3 have very similar binding poses (Fig. 4B through

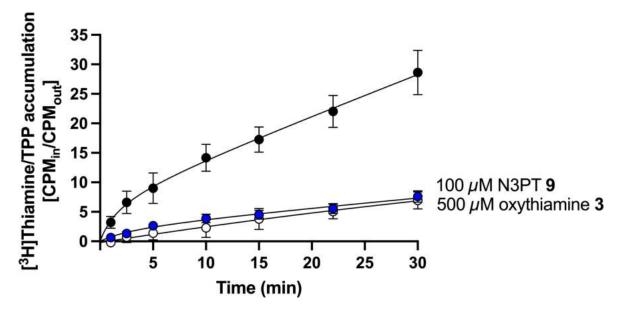


FIG 3 Accumulation of [3H]thiamine and its metabolites in isolated P. falciparum trophozoites in the absence (black circles) or presence of 100 µM N3PT 9 (blue circles), or 500 µM oxythiamine 3 (white circles). Data are averaged from three independent experiments, each carried out in duplicate. Error bars represent SEM and, where not visible, are smaller than the symbols.

D; Fig. S5), together with the latter two compounds being known substrates of PfTPK, support the hypothesis that N3PT 9 is also a substrate of PfTPK. The docked model of thiamine has one hydrogen bond from N-1 to the OH of Ser371 and one from the 4-NH₂ group to the main chain C = O of Gln257. However, it seems likely that the side chain of Glu258 would twist round to form a second hydrogen bond to the NH₂ group—this is what happens in PDB:2f17, which has an Asp at the equivalent position. Compared to thiamine's pyrimidine ring, N3PT 9 has a pyridine ring (N-1 replaced by CH), whereas oxythiamine 3 has an oxopyrimidine in place of thiamine's aminopyrimidine (NH₂ replaced by O). These structural differences would mean that N3PT 9 would have one less hydrogen bond interaction with PfTPK when compared to thiamine, and oxythiamine 3 would have one or two less hydrogen bonds. This would mean that 9 and 3 are likely to have lower affinities than thiamine, and 3 may have lower affinity than 9. Consistent with compound 3 having a lower affinity than compound 9 for PfTPK, a bigger fold-shift in the antiplasmodial IC_{50} value of compound 3 compared to compound 9 was observed in the presence of extracellular thiamine (Table 1). Also consistent with a higher affinity of compound 9 for PfTPK, compared to compound 3, is the observation that overexpression of PfTPK has no effect on the activity of N3PT 9 in the presence of a high concentration of extracellular thiamine, but the activity of compound 3 is increased under the same conditions (Fig. 2).

In vivo antimalarial activity of N3PT 9

To assess whether N3PT 9 possesses antimalarial activity in vivo, we tested it in the murine malaria model, using the P. berghei ANKA strain and Peter's Suppressive Test protocol. Two doses of 9 were tested, 100 and 200 mg/kg, administered intraperitoneally. Signs of toxicity, such as weight loss and reduced movement, were monitored from day 0 to day 5 post-infection (Fig. S6). N3PT 9 showed a dose-dependent reduction in the parasitemia of infected mice (P = 0.0015 and P < 0.0001 for the 100 and 200 mg/kg doses, respectively; Student's t-test) relative to the non-treated group (vehicle only; Fig. 5A). Although the 100 mg/kg dose did not increase the time to symptoms in mice, the 200 mg/kg dose prolonged their time to symptoms by 9 days compared to the untreated mice (Fig. 5B). Treatment with 200 mg/kg N3PT ${\bf 9}$ also prevented the mild gradual weight loss associated with progression of P. berghei infection (P = 0.0014, ANCOVA difference in

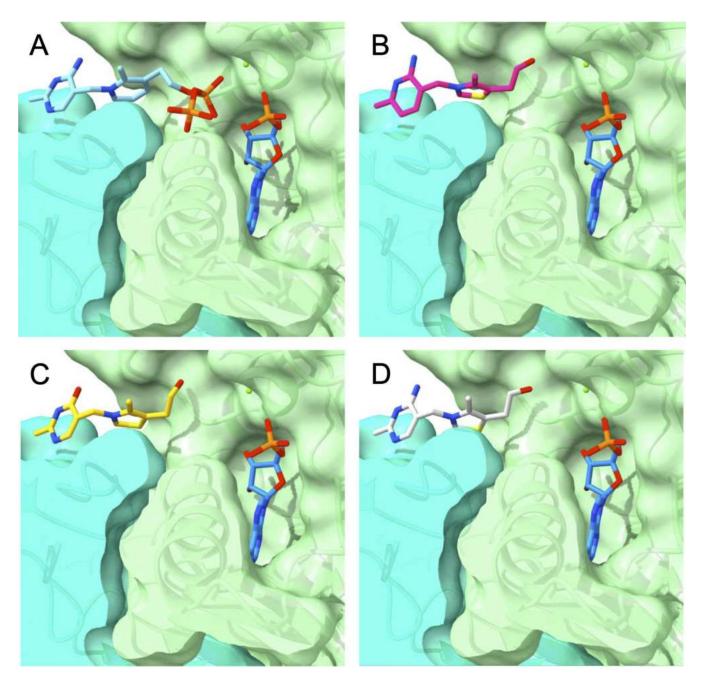


FIG 4 Docking of various compounds into the active site of *Pf*TPK (shown as surface and ribbon) based on an AlphaFold structure (AF-Q14RW4-F1) modeled on the crystal structure of the mouse TPK (PDB:2f17) generated in the presence of AMP. Cyan and green colors represent the two protomers of the putative *Pf*TPK dimer. *Pf*TPK with (A) the ligands in the mouse TPK crystal structure, pyrithiamine pyrophosphate, and AMP, (B) dockings of AMP and N3PT **9** in pink, (C) oxythiamine **3** in yellow, and (D) thiamine **1** in white.

slopes; Fig. S6). This did not happen with 100 mg/kg N3PT $\mathbf{9}$ (P = 0.55, ANCOVA difference in slopes; Fig. S6), consistent with this dose not increasing the time to symptoms.

DISCUSSION

To identify thiamine analogs with better antiplasmodial activity than oxythiamine 3, 11 compounds 9–19 were evaluated against two *Plasmodium* species alongside oxythiamine 3. These 12 compounds together sampled a wide chemical space, with 4/12 being positively charged, 3/12 bearing a modified aminopyrimidine ring, 2/12 bearing a neutral

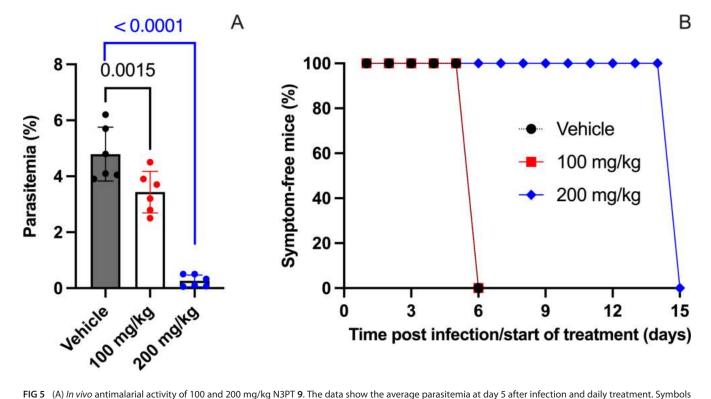


FIG 5 (A) In vivo antimalarial activity of 100 and 200 mg/kg N3PT 9. The data show the average parasitemia at day 5 after infection and daily treatment. Symbols represent data points from individual mice (n = 6). Two independent experiments were carried out, each with three mice in each group. Bars represent averaged data \pm SD. Student's t-test results are indicated above the bars for relevant comparisons. (B) The percentage of symptom-free mice according to treatment: vehicle/PBS (black circles), 100 mg/kg N3PT 9 (red squares), and 200 mg/kg (blue diamonds). n = 6, from two biological replicates.

central ring [as for 5-8 that we have previously reported (18-20)], and 6/12 featuring an open scaffold in place of the central ring (Table 1). Compounds 9-13 suppressed P. falciparum with IC50 values in the micromolar range, while 14-19 were unable to inhibit parasite proliferation by more than 50% at the highest concentration tested (which varied depending on the solubility of the compound). Compounds 13 and 15, which differ from thiamine's pyrimidine ring and the hydroxyl tail, respectively, may be able to hijack the thiamine transporter for cell entry due to their overall structural similarity. While both compounds may compete with intracellular thiamine for binding to TPK, only ethyl thiamine 13 can be activated into 13-pyrophosphate, which in turn competes with TPP for the TPP-dependent enzymes' coenzyme pocket. Oxo thiamine 16 and thiotiamine 17 featuring a neutral central ring (as with 7) failed to inhibit parasite proliferation by more than 30% at the highest concentration tested, probably because they do not have a proper metal-binding group on their tail to enable efficient enzyme binding (18-20). Compounds 10-12, 14, 18, and 19 are all precursors of thiamine and because they are neutral, they may be able to enter cells via simple diffusion. In the cytoplasm, they are chemically transformed into the open-thiol species 20 (Fig. 6), which in turn spontaneously cyclizes into thiamine. They can, therefore, function as thiamine supplements. Because fursultiamine 10 and allithiamine 11 have greater oral bioavailability than the thiamine salt, they have been used to treat beriberi (a disease caused by thiamine deficiency) (37). Upon reduction, fursultiamine 10 and allithiamine 11 produce a corresponding thiol by-product alongside 20. The observed antiplasmodial effect of these compounds can neither be antagonized by increasing the extracellular thiamine concentration nor can the antiplasmodial activity of fursultiamine 10 be altered by expression of PfTPK-GFP. Accordingly, the inhibitory effect may be due to a non-specific action of their released thiol, which in turn may lead to cell damage, as intracellular thiol oxidation produces hydrogen peroxide (H2O2), an oxidizing agent (38). The observed toxic effects in human cells associated with 10 and 11 were a surprising observation,

FIG 6 Stepwise transformation of thiamine precursors 10–12, 14, 18, and 19 through an open-thiol species 20 to thiamine 1. Substructures of the thiamine precursors that will be released in the course of transformation are colored. Reduction and hydrolysis are the two main reaction types, which are highlighted in purple and orange, respectively.

given that they have been used in humans as thiamine supplements and may also be attributed to the released thiol. The transformation of dibenzoyl thiamine 14, bisbentiamine 18, and acetiamine 19 into thiamine generates by-products that are likely to be non-toxic to the parasite at the concentrations used (14 and 18 produce benzoate, and 19 produces acetate). This is consistent with the lack of antiplasmodial activity observed for these compounds. The one exception is cycotiamine 12, which produces carbonate as a by-product. Carbonate is also expected to be non-toxic to the parasite, so the antiplasmodial action of cycotiamine 12 may be attributed to an off-target mechanism of action by its untransformed form. This notion is corroborated by our findings that its activity cannot be antagonized by increasing the extracellular concentration of thiamine nor is it modified by overexpressing *Pf*TPK.

Upon pyrophosphorylation, N3PT **9** is a known transketolase inhibitor and has shown promising anticancer potential (36, 39). It is the only thiamine analog we tested that showed submicromolar antiplasmodial activity *in vitro* in the absence of extracellular thiamine and was between 10 and 60 times more potent than oxythiamine **3** (depending on the extracellular thiamine concentration). We observed a >200-fold reduction in antiplasmodial activity of N3PT **9** when thiamine was added to thiamine-free medium (Table 1), demonstrating its competitive relationship with thiamine/TPP. The fact that N3PT **9** and ethyl thiamine **13** are both very similar to thiamine **1** but have very different antiplasmodial activity is consistent with the thiamine utilization pathway being sensitive to subtle structural changes in the thiamine analogs. Accordingly, ethyl thiamine **13** was not investigated further. N3PT **9** was also active against *P. knowlesi*, had a high selectivity index (Table 1), and was more active than oxythiamine **3**, at half the dose, when tested *in vivo* (Fig. 5). This is an important stepping stone toward developing an antimalarial compound targeting this pathway. Synthesis of a range of derivatives

Downloaded from https://journals.asm.org/journal/aac on 05 November 2024 by 2c0f:fe38:2185:4112:b566:dccc:5a2e:9cbd

of the N3PT **9** lead and systematic *in vitro* testing are warranted to further explore the potential of harnessing the strict dependence of intraerythrocytic *Plasmodium* replication on thiamine.

While the dependence of oxythiamine 3's activation by PfTPK has been established here and previously (15), whether N3PT 9 is also metabolized by PfTPK remains to be shown. To address this, we conducted computational modeling to dock oxythiamine 3, N3PT 9, and thiamine 1 into the active site of PfTPK. As shown in Fig. 4, the binding mode of N3PT 9 is very similar to that of thiamine 1 and oxythiamine 3. This is consistent with N3PT 9 being a PfTPK substrate, but the removal of one hydrogen bond from the pyrimidine ring contrasts with the marked higher inhibition of TPK, indicating that for a better understanding of the binding affinity of N3PT 9 to PfTPK, structural data are needed. An interaction between N3PT 9 and PfTPK is further supported by the [3H]thiamine accumulation experiment, in which [3H]thiamine/metabolite (likely to be [3H]TPP) accumulation in isolated parasites was significantly reduced in the presence of 100 µM N3PT 9 (Fig. 3), consistent with N3PT 9 interacting with TPK, either as a substrate or inhibitor. The same effect was observed with oxythiamine 3, but at a higher concentration, consistent with its lower antiplasmodial activity. In addition, although in the presence of thiamine, the potency of N3PT 9 against parasites expressing PfTPK-GFP is the same as that against control parasites, in thiamine-free medium, PfTPK-GFPexpressing parasites are fourfold more sensitive to N3PT 9 when compared to parasites expressing GFP (Fig. 2), consistent with its antiplasmodial activity, involving, at least in part, *Pf*TPK.

In conclusion, our data identify N3PT **9** as an improved inhibitor over previously reported antiplasmodial thiamine analogs. Further medicinal chemistry efforts to optimize its pharmacological properties may afford a novel antimalarial agent targeting parasite thiamine utilization.

ACKNOWLEDGMENTS

We would like to express our gratitude to the van Dooren lab for supplying the HHF cells used in the cytotoxicity assays and Manuel Rauch for his assistance with the *in vivo* experiments. We would also like to thank the Canberra Branch of the Australian Red Cross Lifeblood for the provision of red blood cells. We are grateful to the Developmental Therapeutics Program (DTP) for providing some of the thiamine analogs.

I.F. received support from both the Australian Government Research Training Program (AGRTP) and the German Academic Research Exchange (DAAD). A.H.Y.C. and T.C.S.H. were supported by K.M. Medhealth.

I.F. performed all the biological studies under the supervision of K.J.S. and K.M. T.C.S.H. and A.H.Y.C. contributed to the chemistry aspect of the study under the supervision of F.J.L. I.F. wrote the first draft of the manuscript with input from K.J.S., A.H.Y.C., and T.C.S.H. All authors revised and approved the final version of the manuscript.

AUTHOR AFFILIATIONS

¹Research School of Biology, The Australian National University, Canberra, Australia

²Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom

³Department of Molecular Parasitology, Institute of Biology, Humboldt University Berlin, Berlin, Germany

AUTHOR ORCIDs

Kevin J. Saliba http://orcid.org/0000-0003-3345-8440

FUNDING

Funder	Grant(s)	Author(s)
Australian Government Research Training Program		lmam Fathoni
German Academic Research Exchange		Imam Fathoni
K.M. Medhealth		Terence C. S. Ho
		Alex H. Y. Chan

ETHICS APPROVAL

The protocol received approval from the ethics committee of the Berlin state authority ['Landesamt für Gesundheit und Soziales Berlin', permit number (G029415)].

ADDITIONAL FILES

The following material is available online.

Supplemental Material

Supplemental figures (AAC01096-24-s0001.pdf). Figures S1 to S6.

REFERENCES

- World malaria report. 2023. Geneva, Switzerland World Health Organisation
- Wicht KJ, Mok S, Fidock DA. 2020. Molecular mechanisms of drug resistance in *Plasmodium falciparum* malaria. Annu Rev Microbiol 74:431–454. https://doi.org/10.1146/annurev-micro-020518-115546
- 3. Dhorda M, Amaratunga C, Dondorp AM. 2021. Artemisinin and multidrug-resistant *Plasmodium falciparum* a threat for malaria control and elimination. Curr Opin Infect Dis 34:432–439. https://doi.org/10.1097/QCO.0000000000000066
- Siqueira-Neto JL, Wicht KJ, Chibale K, Burrows JN, Fidock DA, Winzeler EA. 2023. Antimalarial drug discovery: progress and approaches. Nat Rev Drug Discov 22:807–826. https://doi.org/10.1038/s41573-023-00772-9
- Guerra F, Winzeler EA. 2022. New targets for antimalarial drug discovery.
 Curr Opin Microbiol 70:102220. https://doi.org/10.1016/j.mib.2022.
 102220
- Divo AA, Geary TG, Davis NL, Jensen JB. 1985. Nutritional requirements of *Plasmodium falciparum* in culture. I. Exogenously supplied dialyzable components necessary for continuous growth. J Protozool 32:59–64. https://doi.org/10.1111/j.1550-7408.1985.tb03013.x
- Kirk K, Horner HA, Kirk J. 1996. Glucose uptake in *Plasmodium falcipa-rum*-infected erythrocytes is an equilibrative not an active process. Mol Biochem Parasitol 82:195–205. https://doi.org/10.1016/0166-6851(96)02734-x
- Wrenger C, Knöckel J, Walter RD, Müller IB. 2008. Vitamin B1 and B6 in the malaria parasite: requisite or dispensable? Braz J Med Biol Res 41:82– 88. https://doi.org/10.1590/s0100-879x2008005000006
- Zhang M, Wang C, Otto TD, Oberstaller J, Liao X, Adapa SR, Udenze K, Bronner IF, Casandra D, Mayho M, Brown J, Li S, Swanson J, Rayner JC, Jiang RHY, Adams JH. 2018. Uncovering the essential genes of the human malaria parasite *Plasmodium falciparum* by saturation mutagenesis. Science 360:6388. https://doi.org/10.1126/science.aap7847
- Pohl M, Sprenger GA, Müller M. 2004. A new perspective on thiamine catalysis. Curr Opin Biotechnol 15:335–342. https://doi.org/10.1016/j. copbio.2004.06.002
- Oppenheim RD, Creek DJ, Macrae JI, Modrzynska KK, Pino P, Limenitakis J, Polonais V, Seeber F, Barrett MP, Billker O, McConville MJ, Soldati-Favre D. 2014. BCKDH: the missing link in apicomplexan mitochondrial metabolism is required for full virulence of *Toxoplasma gondii* and *Plasmodium berghei*. PLoS Pathog 10:e1004263. https://doi.org/10.1371/ journal.ppat.1004263
- McMillan PJ, Stimmler LM, Foth BJ, McFadden GI, Müller S. 2005. The human malaria parasite *Plasmodium falciparum* possesses two distinct dihydrolipoamide dehydrogenases. Mol Microbiol 55:27–38. https://doi. org/10.1111/j.1365-2958.2004.04398.x

- Ke H, Lewis IA, Morrisey JM, McLean KJ, Ganesan SM, Painter HJ, Mather MW, Jacobs-Lorena M, Llinás M, Vaidya AB. 2015. Genetic investigation of tricarboxylic acid metabolism during the *Plasmodium falciparum* life cycle. Cell Rep 11:164–174. https://doi.org/10.1016/j.celrep.2015.03.011
- Foth BJ, Stimmler LM, Handman E, Crabb BS, Hodder AN, McFadden GI.
 2005. The malaria parasite *Plasmodium falciparum* has only one pyruvate dehydrogenase complex, which is located in the apicoplast. Mol Microbiol 55:39–53. https://doi.org/10.1111/j.1365-2958.2004.04407.x
- Chan XWA, Wrenger C, Stahl K, Bergmann B, Winterberg M, Müller IB, Saliba KJ. 2013. Chemical and genetic validation of thiamine utilization as an antimalarial drug target. Nat Commun 4:2060. https://doi.org/10. 1038/ncomms3060
- Müller IB, Hyde JE, Wrenger C. 2010. Vitamin B metabolism in Plasmodium falciparum as a source of drug targets. Trends Parasitol 26:35–43. https://doi.org/10.1016/j.pt.2009.10.006
- Grabowska E, Czerniecka M, Czyżewska U, Zambrzycka A, Łotowski Z, Tylicki A. 2021. Differences in the efficiency of 3-deazathiamine and oxythiamine pyrophosphates as inhibitors of pyruvate dehydrogenase complex and growth of HeLa cells in vitro. J Enzyme Inhib Med Chem 36:122–129. https://doi.org/10.1080/14756366.2020.1844681
- Chan AHY, Ho TCS, Irfan R, Hamid RAA, Rudge ES, Iqbal A, Turner A, Hirsch AKH, Leeper FJ. 2023. Design of thiamine analogues for inhibition of thiamine diphosphate (ThDP)-dependent enzymes: systematic investigation through scaffold-hopping and C2-functionalisation. Bioorg Chem 138:106602. https://doi.org/10.1016/j.bioorg.2023.106602
- Chan AHY, Ho TCS, Fathoni I, Pope R, Saliba KJ, Leeper FJ. 2023. Inhibition of thiamine diphosphate-dependent enzymes by triazole-based thiamine analogues. ACS Med Chem Lett 14:621–628. https://doi.org/10.1021/acsmedchemlett.3c00047
- Chan AHY, Fathoni I, Ho TCS, Saliba KJ, Leeper FJ. 2022. Thiamine analogues as inhibitors of pyruvate dehydrogenase and discovery of a thiamine analogue with non-thiamine related antiplasmodial activity. RSC Med Chem 13:817–821. https://doi.org/10.1039/d2md00085g
- Allen RJW, Kirk K. 2010. Plasmodium falciparum culture: the benefits of shaking. Mol Biochem Parasitol 169:63–65. https://doi.org/10.1016/j. molbiopara.2009.09.005
- Guan J, Spry C, Tjhin ET, Yang P, Kittikool T, Howieson VM, Ling H, Starrs L, Duncan D, Burgio G, Saliba KJ, Auclair K. 2021. Exploring heteroaromatic rings as a replacement for the labile amide of antiplasmodial pantothenamides. J Med Chem 64:4478–4497. https://doi.org/10.1021/ acs.jmedchem.0c01755
- Hemasa AL, Mack M, Saliba KJ. 2022. Roseoflavin, a natural riboflavin analogue, possesses in vitro and in vivo antiplasmodial activity.

Downloaded from https://journals.asm.org/journal/aac on 05 November 2024 by 2c0f:fe38:2185:4112:b56b:dccc:5a2e:9cbd

- Antimicrob Agents Chemother 66:e0054022. https://doi.org/10.1128/aac.00540-22
- Tjhin ET, Spry C, Sewell AL, Hoegl A, Barnard L, Sexton AE, Siddiqui G, Howieson VM, Maier AG, Creek DJ, Strauss E, Marquez R, Auclair K, Saliba KJ. 2018. Mutations in the pantothenate kinase of *Plasmodium* falciparum confer diverse sensitivity profiles to antiplasmodial pantothenate analogues. PLoS Pathog 14:e1006918. https://doi.org/10. 1371/journal.ppat.1006918
- Johnson JD, Dennull RA, Gerena L, Lopez-Sanchez M, Roncal NE, Waters NC. 2007. Assessment and continued validation of the malaria SYBR green I-based fluorescence assay for use in malaria drug screening. Antimicrob Agents Chemother 51:1926–1933. https://doi.org/10.1128/ AAC.01607-06
- Makler MT, Hinrichs DJ. 1993. Measurement of the lactate dehydrogenase activity of *Plasmodium falciparum* as an assessment of parasitemia. Am J Trop Med Hyg 48:205–210. https://doi.org/10.4269/ajtmh.1993.48. 205
- Howieson VM, Tran E, Hoegl A, Fam HL, Fu J, Sivonen K, Li XX, Auclair K, Saliba KJ. 2016. Triazole substitution of a labile amide bond stabilizes pantothenamides and improves their antiplasmodial potency. Antimicrob Agents Chemother 60:7146–7152. https://doi.org/10.1128/ AAC.01436-16
- Saliba KJ, Horner HA, Kirk K. 1998. Transport and metabolism of the essential vitamin pantothenic acid in human erythrocytes infected with the malaria parasite *Plasmodium falciparum*. J Biol Chem 273:10190– 10195. https://doi.org/10.1074/jbc.273.17.10190
- Lehane AM, Saliba KJ, Allen RJW, Kirk K. 2004. Choline uptake into the malaria parasite is energized by the membrane potential. Biochem Biophys Res Commun 320:311–317. https://doi.org/10.1016/j.bbrc.2004. 05.164
- Chan AHY, Ho TCS, Parle DR, Leeper FJ. 2023. Furan-based inhibitors of pyruvate dehydrogenase: SAR study, biochemical evaluation and computational analysis. Org Biomol Chem 21:1755–1763. https://doi. org/10.1039/d2ob02272a
- Chan AHY, Ho TCS, Fathoni I, Hamid R, Hirsch AKH, Saliba KJ, Leeper FJ. 2024. Evaluation of ketoclomazone and its analogues as inhibitors of 1deoxy-d-xylulose 5-phosphate synthases and other thiamine diphosphate (ThDP)-dependent enzymes. RSC Med Chem 15:1773–1781. https: //doi.org/10.1039/d4md00083h

- Peters W, Fleck SL, Robinson BL, Stewart LB, Jefford CW. 2002. The chemotherapy of rodent malaria. LX. The importance of formulation in evaluating the blood schizontocidal activity of some endoperoxide antimalarials. Ann Trop Med Parasitol 96:559–573. https://doi.org/10. 1179/000349802125001744
- Ndegwa DN, Kundu P, Hostetler JB, Marin-Menendez A, Sanderson T, Mwikali K, Verzier LH, Coyle R, Adjalley S, Rayner JC. 2021. Using Plasmodium knowlesi as a model for screening Plasmodium vivax bloodstage malaria vaccine targets reveals new candidates. PLoS Pathog 17:e1008864. https://doi.org/10.1371/journal.ppat.1008864
- Battle KE, Baird JK. 2021. The global burden of *Plasmodium vivax* malaria is obscure and insidious. PLoS Med 18:e1003799. https://doi.org/10. 1371/journal.pmed.1003799
- Liu JY, Timm DE, Hurley TD. 2006. Pyrithiamine as a substrate for thiamine pyrophosphokinase. J Biol Chem 281:6601–6607. https://doi. org/10.1074/jbc.M510951200
- Thomas AA, Le Huerou Y, De Meese J, Gunawardana I, Kaplan T, Romoff TT, Gonzales SS, Condroski K, Boyd SA, Ballard J, Bernat B, DeWolf W, Han M, Lee P, Lemieux C, Pedersen R, Pheneger J, Poch G, Smith D, Sullivan F, Weiler S, Wright SK, Lin J, Brandhuber B, Vigers G. 2008. Synthesis, *in vitro* and *in vivo* activity of thiamine antagonist transketolase inhibitors. Bioorg Med Chem Lett 18:2206–2210. https://doi.org/10.1016/j.bmcl. 2007.11.101
- Lonsdale D. 2004. Thiamine tetrahydrofurfuryl disulfide: a little known therapeutic agent. Med Sci Monit 10:RA199–203. https://medscimonit. com/abstract/index/idArt/11763.
- Held KD, Biaglow JE. 1994. Mechanisms for the oxygen radical-mediated toxicity of various thiol-containing compounds in cultured mammalian cells. Radiat Res 139:15–23. https://doi.org/10.2307/3578727
- 39. Gyuris J, Han M, Ronan C. 2005. N3-pyridyl-thiamine and its use in cancer treatments. Patent number: WO2005094803 A2.