1 AMERICAN An“micrObial Ageﬂts
B ccmior | nd Chemnotherany®

MECHANISMS OF ACTION: PHYSIOLOGICAL EFFECTS

Check for
updates |

Perillyl Alcohol Reduces Parasite Sequestration and
Cerebrovascular Dysfunction during Experimental Cerebral

Malaria

Adriana A. Marin,? Oscar Murillo,>* Rodrigo A. Sussmann,®* Luana S. Ortolan,** Daniella S. Battagello, Thatyane de Castro Quirino,©

Jackson C. Bittencourt, Sabrina Epiphanio,©

aDepartment of Parasitology, Institute of Biomedical Science, University of Sdo Paulo, Sdo Paulo, Brazil
bDepartment of Immunology, Institute of Biomedical Science, University of Sdo Paulo, Sdo Paulo, Brazil

Alejandro M. Katzin,? Leonardo J. M. Carvalho®

<Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of Sdo Paulo, Sdo Paulo, Brazil

dDepartment of Anatomy, Institute of Biomedical Science, University of Sdo Paulo, Sdo Paulo, Brazil
eLaboratory of Malaria Research, Oswaldo Cruz Institute, Rio de Janeiro, Brazil

ABSTRACT Cerebral malaria (CM) is a severe immune vasculopathy which presents
a high mortality rate (15 to 20%), despite the availability of artemisinin-based ther-
apy. More effective immunomodulatory and/or antiparasitic therapies are urgently
needed. Experimental cerebral malaria (ECM) in mice is used to elucidate aspects
involved in this pathology because it manifests many of the neurological features
of CM. In the present study, we evaluated the potential mechanisms involved in
the protection afforded by perillyl alcohol (POH) in mouse strains susceptible to
CM caused by Plasmodium berghei ANKA (PbA) infection through intranasal preven-
tive treatment. Additionally, we evaluated the interaction of POH with the cerebral
endothelium using an in vitro model of human brain endothelial cells (HBEC).
Pharmacokinetic approaches demonstrated constant and prolonged levels of POH
in the plasma and brain after a single intranasal dose. Treatment with POH effec-
tively prevented vascular dysfunction. Furthermore, treatment with POH reduced
the endothelial cell permeability and PbA parasitized red blood cells in the brain
and spleen. Finally, POH treatment decreased the accumulation of macrophages
and T and B cells in the spleen and downregulated the expression of endothelial
adhesion molecules (ICAM-1, VCAM-1, and CD36) in the brain. POH is a potent
monoterpene that prevents cerebrovascular dysfunction in vivo and in vitro,
decreases parasite sequestration, and modulates different processes related to the
activation, permeability, and integrity of the blood-brain barrier (BBB), thereby pre-
venting cerebral edema and inflammatory infiltrates.

KEYWORDS Plasmodium berghei, experimental cerebral malaria, vascular dysfunction,
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erebral malaria (CM) is one of the most serious complications of Plasmodium falcip-

arum infection. In regions of endemicity in Africa, CM mostly affects children under
the age of five, while in Southeast Asia it is observed mostly in young adults (1). The
lethality of CM ranges from 15% to 25% with the best available treatments (2). Over
25% of CM survivors are afflicted with lifelong sequelae, including sensory and cogni-
tive impairment (3). Parenteral artesunate is now widely accepted as the standard of
care for the treatment of CM, both in adults and children, following the landmark
SEAQUAMAT and AQUAMAT trials that demonstrated its superiority over quinine (4, 5).
Nevertheless, treatment with potent artemisinin derivatives alone is insufficient to pre-
vent death or neurological disability in all patients with CM.
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Owing to important limitations in studying the pathogenesis of human cerebral
malaria (HCM) and to evaluate novel therapeutic interventions, experimental cerebral
malaria (ECM), a neurological syndrome induced in susceptible mice by Plasmodium
berghei ANKA infection (PbA), has been widely used in pathogenesis and therapeutic
investigations since there is evidence that the model shares several features with HCM
(6), although important differences are also observed. The pros and cons of this model
have been debated elsewhere (7-9). Vascular congestion is a key pathological event in
both HCM and ECM, although mechanisms leading to congestion differ. Plasmodium
berghei does not express orthologues of Plasmodium falciparum erythrocyte mem-
brane protein 1 (PfEMP1), whose variants are responsible for P. falciparum cytoadher-
ence and sequestration in the brain, a step considered critical in HCM pathogenesis
(10). Although receptor-mediated parasitized red blood cells (pRBCs) sequestration
may not occur in ECM (11) and leukocyte adhesion to highly inflamed vessels is the
key feature observed in this model, accumulation of PbA pRBCs in the brain occurs (12,
13), and the adherent leukocytes can help trap pRBCs (14). A recent elegant study
showed that P. berghei pRBCs are trapped in cerebral capillaries, likely due to rheologi-
cal changes of the red blood cells (RBCs), and can block blood flow (15). In addition,
trapped pRBCs can focus the damage to endothelial cells and the vessels by providing
parasite molecules for endothelial cell activation and antigen presentation to CD8* T
cells, resulting in breakdown of the blood-brain barrier (BBB) and downstream patho-
genic mechanisms such as axonal injury (16). Therefore, pRBC accumulation in the
brain is also an important step in ECM pathogenesis. Potent proinflammatory
responses and increased expression of endothelial adhesion molecules are implicated
in parasite or leukocyte sequestration in the cerebral microvasculature and other
organs (17). Other factors, such as liver and metabolic alterations, also contribute to
ECM pathogenesis (15, 18, 19).

A number of studies have addressed the pathological changes of the BBB in HCM,
resulting in increased capillary permeability, cerebral edema, and increased intracranial
pressure (20, 21). In ECM, edema is one of the most prominent features of late-stage
disease, and widely distributed endothelial cell damage has been reported (22). Mice
with ECM show breakdown of the BBB (18, 19, 22), and increased vascular permeability
has been described as early as day 3 postinfection in retinal wholemounts (23).
Endothelial cells in the microvasculature show signs of damage during the progression
of ECM, and CD8™" T cells may impair the function of microvascular endothelial cells via
perforin-mediated mechanisms (24). CD8-depleted PbA-infected mice show reduced
vascular permeability compared with that of wild-type mice (25). CD8* T cells are
found near sites of pRBC-mediated plugging of small vessels and vascular leakage (16),
and CD8* T cell depletion prevents death by ECM (26). Recently, CD8" T cells have
also been shown to accumulate in the brain in HCM (27, 28). In both ECM and HCM,
very low numbers of CD8* T cells would be enough to mediate vascular damage (16,
26, 27).

Our previous studies have shown that some terpenes, such as nerolidol, limonene,
and perillyl alcohol, have inhibitory effects against P. falciparum and P. berghei growth
(29, 30). Mainly, the monoterpene perillyl alcohol (POH) was found to prevent ECM de-
velopment. This effect, however, did not rely on the antiplasmodial activity, but it was
associated with the ability of POH to decrease leukocyte accumulation and hemor-
rhage in the brains of P. berghei ANKA-infected mice and also to downregulate the lev-
els of interleukin 10 (IL-10), IL-6, tumor necrosis factor alpha (TNF-a), gamma interferon
(IFN-y), IL-12, and monocyte chemoattractant protein-1 (MCP-1) in the brain and spleen
(31).

In the present study, we further addressed the mechanisms involved in the POH
protective effect in ECM by probing whether POH treatment modulates both parasite
sequestration in different organs and cerebrovascular inflammation through downreg-
ulation of endothelial activation proteins and protection of BBB breakdown. Finally, we
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FIG 1 Pharmacokinetic profile of POH in the plasma and brain using GC-MS. C57BL/6 mice were treated with a single dose of 500 mg/kg of POH
euthanized at predetermined times (n=4 per group). Plasma and brains were collected, and POH was extracted from the samples and analyzed using GC-
MS. (A) Pharmacokinetic profile of POH in the plasma shows that POH remained constant until 8 h after inhalation, the concentration decreased at 12 h,
and it was undetected at 24 h after inhalation. (B) Pharmacokinetic profile of POH in the brain shows that the concentration decreased 30 min after
inhalation, it remained constant until 12 h, and POH was detected in the brain extracts 24 h after inhalation. Data are presented as mean * SD.

investigated whether POH affects the cerebral endothelium permeability in vitro by
evaluating its effect on human brain endothelial cells (HBECs).

RESULTS

Pharmacokinetics of POH in the brain and plasma. The maximum concentration
of POH (32.98 = 4.9 ng/ml) was detected shortly after administration, within 2 min.
The concentration of POH in the plasma remained relatively constant until 8 h after
inhalation (26.25 + 0.7 ng/ml), decreased to 16.87 = 1.5ng/ml at 12 h, and became
undetectable 24 h after inhalation (Fig. TA). Regarding POH quantification in the
brain, we also detected POH until 12 h after a single intranasal dose. Maximal con-
centration (92.59 ng/ml) after inhalation was detected 2 min after administration.
The concentration of POH in the brain decreased substantially 30 min after inhala-
tion (33.47 ng/ml) and then remained constant up to 8 h after inhalation. At 12 h,
the concentration decreased further but remained detectable 24 h after inhalation
(Fig. 1B). Chromatogram peaks and retention times corresponding to the previously
standardized metabolites are shown in Fig. S2.

POH reduces PbAv<iferase sequestration in the brain and spleen of PbA-infected
mice. POH treatment had no influence on peripheral parasitemia but prevented
hypothermia and splenomegaly (Fig. S3). The results presented in Fig. 2 indicate
that POH significantly inhibited PbA sequestration. POH-treated mice showed a sig-
nificant reduction in PbA sequestration in the whole body compared to that of the
vehicle-treated mice (Fig. 2A and B). Ex vivo images of the organs also confirmed
the inhibitory effects. POH prevented PbA sequestration very effectively in the
brain and spleen but not in the lungs or the liver (Fig. 2C and D). Reductions in PbA
sequestration in the brain and spleen are also reflected in the decrease in the 18S
rRNA of the parasite (Fig. 2E).

POH prevents BBB damage in PbA-infected mice. A characteristic feature of
inflammation is the breakdown of the BBB. On day 6 postinfection, mice were injected
with Evans blue solution to analyze the BBB integrity in uninfected animals and vehi-
cle-treated and POH-treated infected mice. Vehicle-treated PbA-infected mice showed
breakdown of the BBB on day 6, with increased leakage of Evans blue into the brain
parenchyma. POH treatment prevented leakage, and the levels of Evans blue in the
brain parenchyma were not different from those in the uninfected controls (Fig. 3).
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FIG 2 Effect of POH on the PbA luciferase sequestration using bioluminescence. Whole-body imaging after an injection of luciferin from a naive animal
(A1), infected, untreated, and unperfused animal (A2), infected, untreated, and perfused animal (A3), and an infected, POH-treated, and perfused animal
(A4). (B) Quantification of whole-body bioluminescence of perfused and nonperfused PbA-infected mice treated with POH or vehicle. (C) Quantification of
bioluminescence in the brain, spleen, lungs, and liver. (D) Ex vivo imaging of the brain, spleen, liver, and lungs of untreated, perfused, and infected animals
(D1, 3, 5, and 7) and perfused, infected, and POH-treated animals (D2, 4, 6, and 8). (E) Plasmodium berghei 185 RNA levels in the brain and spleen. Data are
presented as mean = standard error of the mean (SEM) (n=5 per group). This figure is representative of data from three independent experiments. *, P <

0.05; **, P < 0.01; ***, P < 0.001.

POH reduces the permeability of HBECs. An in vitro cell permeability assay was
established using HBEC monolayer (Fig. 4A). Cocultivation of HBECs with P. falciparum-
parasitized RBCs or with TNF-« (a proinflammatory cytokine closely related to the phe-
nomena of inflammation and endothelial activation) induced marked increases in
Evans blue extravasation, indicating loss of cell-cell junction integrity. HBECs stimu-
lated with P. falciparum or TNF-a showed a marked increase in interendothelial junc-
tions (OlJs), and these changes were prevented by coincubation with POH (Fig. 4B).
Furthermore, the addition of POH substantially prevented Evans blue extravasation in
cells stimulated with either P. falciparum or TNF-« (Fig. 4Q).

POH downregulates ICAM-1, VCAM-1, and CD36 expression in the brains of
PbA-infected mice. Damage to the BBB allows leakage of plasma proteins and fluids
into the perivascular and parenchymal extracellular spaces, causing vasogenic edema
and endothelial activation. Excessive proinflammatory cytokine production leads to
cell adhesion receptor upregulation in the brain in ECM, of receptors such as ICAM-1,
VCAM-1, and P-selectin. These findings were confirmed in this study. ICAM-1 expres-
sion in the mice with ECM showed a 3-fold increase compared with the expression in
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FIG 3 POH prevents the blood-brain barrier breakdown in PbA-infected mice. C57BL/6 mice infected
with PbA were treated with 500mg kg 'day ' POH or vehicle. On day 6 of infection, Evans blue
solution was injected intravenously and quantified in the brain. PbA-infected mice showed increased
extravasation of Evans blue in the brain, which was prevented by POH treatment (n=8 for POH
groups and n=3 for uninfected). The results are shown as mean * standard deviation (SD). The data
are representative of three independent experiments. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

uninfected control mice. POH treatment significantly inhibited the expression of
ICAM-1 (P<0.01), VCAM-1, and CD36 (P <0.05) in the brain (Fig. 5A). Indeed, we
demonstrated, through immunohistochemistry studies, that ICAM-1 was the endo-
thelial protein most downregulated in the brains of POH-treated mice compared
with its expression in PbA-mice. Immunohistochemistry (IHC) profile showed differ-
ences between the POH-treated mice and untreated mice. ICAM-1 and VCAM-1
expression was significantly downregulated in POH-treated mice compared to that
in PbA-mice. CD36 was the least expressed protein in all the groups; however, it
was also downregulated by POH (Fig. 5B and C).

POH reduces CD4+, CD8*, and CD19* F4/80 cell populations in the spleens of
PbA-infected C57BL/6 mice. The results presented in Fig. 6 show the characterization
of lymphoid and myeloid populations in the spleens of vehicle-treated and POH-
treated mice after 6 days of infection. Vehicle-treated infected mice showed significant
increases in the numbers of T (CD4* and CD87) and B (CD19") lymphocytes and mac-
rophages (F4/80%) in the spleen, and POH treatment mostly prevented such increases.

DISCUSSION

The results of POH treatment have demonstrated its high efficacy in preventing par-
asite accumulation and endothelial dysfunction caused by P. berghei infection. POH
treatment was effective in preventing parasite sequestration in the spleen and brain. In
the brain, we found a marked reduction in P. berghei accumulation, probably because
of the release of POH via inhalation, since it is known that trigeminal and olfactory
nerves can drive drugs directly to the brain, improving its therapeutic potential (32).
However, the treatment had a low efficacy in preventing parasite accumulation in the
lungs and liver. Until recently, studying the relationship between peripheral blood par-
asitemia, parasite tissue sequestration, and disease severity has been difficult.
Typically, peripheral blood parasitemia is a poor predictor of parasite biomass and dis-
ease severity because it only measures circulating immature parasites, not tissue-se-
questered mature parasites (33). In this study, POH had little effect on peripheral para-
sitemia but had a marked effect on parasite accumulation in the brain. In addition,
pharmacokinetic approaches demonstrated constant and prolonged levels of POH in
the plasma and brain after a single intranasal dose, evidencing that a single daily dose
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FIG 4 POH decreases endothelial dysfunction in human brain endothelial cells (HBECs). HBECs were stimulated with 50 ng/ml TNF or P.
falciparum-parasitized red blood cells (at a 30:1 P. falciparum to HBEC ratio) and treated with 20 uM POH for 6 h. A range of 10 to 20
pictures of HBECs were taken for each culture using fluorescence microscopy, and representative images were presented for unstimulated
cells (A1 to 2), cells stimulated with 30 mature forms of P. falciparum per cell (A3), cells stimulated with the parasite and treated with 20 uM
POH (A4), cells stimulated with 50 ng/ml of TNF (A5), and cells stimulated with 50 ng/ml TNF and 20 M POH (A6). White arrows indicate the
opening of the interendothelial junctions (OlJs). (B) Data show the ratio of the area of Olls per total area of each picture. (C) Evans blue
leakage was significantly lower in the POH-treated HBECs than in TNF-stimulated and parasite. The results are shown as mean * SD (scale
bars: 50 um). These graphs are representative of three independent experiments. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

treatment strategy was efficient in guaranteeing the desired therapeutic effect.
Reliable and rapid quantification and pharmacokinetics of POH after inhalation delivery
are of significant value for the clinic. Extensive pharmacokinetic studies of POH and
perillic acid, which is the most abundant metabolite, have been performed after oral
delivery of POH (34, 35). Oral delivery of POH at high doses for long periods, however,
can result in gastrointestinal toxicity, mainly vomiting and heartburn (36). In contrast,
intranasal POH effectively circumvented passage and its associated toxicities were
well-tolerated, even after years of continuous use (37).

Prevention of vascular dysfunction by POH treatment was another relevant finding
in this study. BBB breakdown is a feature of HCM (21) and ECM (22), causing an
increase in vascular permeability and allowing the entry of inflammatory mediators
into the brain (17). Proinflammatory cytokine levels were reduced in the brain and
spleen of mice with ECM by POH effect (31). In the present study, POH treatment dras-
tically reduced Evans blue leakage in the brains of the treated animals. Additionally, an
in vitro model using HBECs culture also showed that POH treatment reduced the per-
meability of endothelial monolayer induced by P. falciparum and/or TNF-a. Previous
studies have demonstrated a decrease in endothelial tight-junction proteins in both
HCM and ECM (38). Damage to the BBB allows leakage of plasma proteins and fluids
into the perivascular and parenchymal extracellular spaces, causing vasogenic edema
and endothelial activation (38). The upregulation of endothelial receptors is related to
severe syndrome during malaria infection (39). ICAM-1 and EPCR expression are
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significantly upregulated in the cerebral vascular endothelium in fatal malaria and
have been reported as key receptors for P. falciparum sequestration in the brains of
both adults and children (40-42). In ECM, upregulation of adhesion molecules such as
ICAM-1, VCAM-1, and all P-selectins is also observed in the cerebral vascular endothe-
lium of infected mice (17). In addition, ICAM-1-deficient mice do not develop ECM, sug-
gesting that the expression of ICAM-1 is an essential step in severe syndrome develop-
ment in this model (43). Indeed, previous studies have shown that interventions that
decrease the expression of adhesion molecules in the brain, decreasing inflammation
and vascular leakage, have beneficial effects in ECM (44, 45), and our findings with
POH are in line with such studies. However, it is important to point out that in ECM,
vascular adhesion molecule upregulation is not directly related to pRBC sequestration,
as it occurs in HCM. Indeed, in HCM, expressed molecules in the brain endothelium
such as ICAM-1 and EPCR are directly involved in pRBC sequestration acting as recep-
tors for variants of PfEMP1 (10, 42). Plasmodium berghei does not express orthologues
of PfEMP1, and its cells are not sequestered through this mechanism. Instead, in ECM,
inflammation with endothelial activation and increased expression of adhesion
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FIG 6 Characterization of lymphoid and myeloid cell populations in the spleen of PbA-infected C57BL/6 mice treated with POH or vehicle after 6 days of
infection. The spleen was collected and macerated for total splenocyte isolation. POH showed high efficacy in preventing an increase in T and B
lymphocytes and macrophages compared with vehicle. The number of CD4*, CD8", CD19*, and F4/80" cells reduced significantly in POH-treated mice.
The experiment was repeated twice, and the data represent the mean * SD (n=5 per group). *, P < 0.05; ***, P <0,001.

molecules facilitate leukocyte recruitment and accumulation in brain vessels, resulting
in vascular plugging and damage, impaired blood flow, and secondary accumulation
of pRBCs (15, 45). In any case, POH-mediated decreased vascular inflammation in ECM
helps prevent this leukocyte accumulation, improving cerebral perfusion, which prob-
ably could also help in the washout of trapped pRBCs in smaller vessels (16). Among
the brain-sequestered leukocytes, CD8* T cells are present in low numbers in ECM but
play a major role in pathogenesis by causing endothelial damage and subsequent col-
lapse of the BBB (26, 46). POH therapy was efficient in controlling the proliferation of
CD8* and CD4* T cells, B lymphocytes, and macrophage populations in the spleen,
and this effect can eventually prevent excessive migration of certain cell types to the
brain and therefore decrease local infiltrates. Indeed, the spleen plays a critical role in
ECM, as splenectomized mice or mice with irradiated spleens do not develop ECM (47).
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Malaria parasites are blood-borne pathogens, and the spleen is the major site for the
immune response against them and also where immune cells involved in ECM pathol-
ogy (e.g., CD4" and CD8* T cells) are probably generated and activated. Therefore,
POH, by preventing splenic pRBC sequestration and decreasing inflammatory reaction
originating in the spleen, will help to prevent ECM. Since sequestration of inflamma-
tion-mediated pRBCs and presence of low numbers of effector CD8" T cells are impor-
tant factors in HCM pathogenesis (27), POH might also be beneficial in human malaria
neurological syndrome.

Extensive literature has reported the chemopreventive and antiproliferative activity
of POH against a wide variety of experimental tumors, including lung neoplasms,
mammary cancer, and pancreatic and liver tumors, attributable to its ability to effec-
tively inhibit proliferation by inducing cytotoxicity and apoptosis, thereby arresting the
cell cycle in the Gy/G, phase, and to its anti-inflammatory effects, decreasing systemic
cytokine production and consistently inhibiting endothelial P-selectin expression
(48-51). Some other mechanisms have also been reported in the literature and are
directed with a POH capability to inhibit the prenylation of Ras protein in several types
of cell lines (51-54). The membrane anchorage of Ras is facilitated by its prenylation
and is required for functional activity in signal transduction which includes a wide vari-
ety of cellular processes, including growth, differentiation, cytoskeletal organization,
and membrane trafficking (55). Indeed, previous studies have demonstrated that POH
was able to inhibit farnesylation proteins in P. falciparum (31). In the present study, we
have shown the ability of POH to exert an antiproliferative effect in the populations of
T and B lymphocytes in the spleen. This effect could be due to the capacity of POH in
inhibition or reduction of the prenylation process from these cells. However, this mech-
anism was not explored in this current approach. Further studies could be addressed
in order to deeply examine this mechanism.

The findings in this and our previous study (31) indicate that POH is an efficient
monoterpene to prevent ECM development, and its effects are summarized in Fig. 7.
POH acts by preventing the overwhelming inflammatory response observed during
ECM and preventing splenomegaly and proliferation of macrophage, T cell, and B cell
populations, as well as increased cytokine and adhesion molecule expression in the
brain, leading to decreased parasite accumulation, BBB breakdown, and tissue damage.
The therapeutic potential for POH as an adjunctive therapy administered in combina-
tion with an antimalarial drug in the setting of late-stage ECM has not been addressed
in this study, and the findings described here may suggest that such trials in the ECM
model are worthwhile. On the other hand, POH could be used to decrease inflamma-
tory effects, caused by infectious agents or not, in organs such as brain, spleen, or
lungs using this route of administration.

MATERIALS AND METHODS

Mice, parasites, infection, and treatment. Male 6 to 8-week-old C57BL/6 mice weighing 22 +2 g
each, provided by the Vivarium Sector of the Institute of Biomedical Sciences, University of Sdo Paulo,
were kept in rooms with controlled temperature and humidity and a 12 h light/dark cycle. Mice were
handled in accordance with the ethical principles of animal experimentation adopted by the Brazilian
Society of Laboratory Animal Sciences (approval number 140/2009). P. berghei ANKA (PbA) expressing
green fluorescent protein (GFP) or luciferase (kindly donated by the Malaria Research and Reference
Reagent Resource Center [MR4], Manassas, VA; deposited by C.J. Janse and A.P. Waters; MR4 reagent
number MRA-865) was propagated in naive mice. In each experiment, a fresh blood sample was
obtained from a passage mouse, and a suspension containing 1 x 10° parasitized red blood cells
(pRBCs) in 200 ul was injected intraperitoneally (i.p.) into each experimental mouse. Parasitemia was
monitored using flow cytometry and quantified by counting the number of pRBCs in 100,000 RBCs.
Clinical assessment was performed according to the previously described methodology (56). Body tem-
perature was monitored by using an Acorn Series Thermocouple thermometer with a mouse rectal
probe (Oakton Instruments, Vernon Hills, IL). Mice were treated with 500 mg/kg of POH intranasally
(Santa Cruz Biotechnology, Dallas, USA) after 2 h of infection every 24 h for 6 days, and the control group
inhaled the vehicle alone (70% ethanol and 10% glycerol) according to a previously described methodol-
ogy (31).

Determination of POH concentration in the plasma and brain using GC-MS. C57BL/6 mice were
treated with a single dose of 500mg kg~ ' day ' POH intranasally. Blood and brain samples were col-
lected at predetermined times (0, 0.5, 2, 3, 4, 6, 8, 12, and 24 h). Samples were processed and the
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FIG 7 Schematic representation of the mechanism of action of POH as a preventive therapy for experimental cerebral malaria. A
500mg kg 'day ' dose of POH administered intranasally reduces the cerebrovascular inflammation, preventing leukocyte
adhesion and pRBCs accumulation in the larger venules, resulting in decreased vascular congestion. Decreased congestion
reduces vascular resistance, and improved blood flow may help to wash out trapped pRBCs in microvessels (black arrow). Also,
BBB breakdown was prevented by treatment. In addition, molecules related to endothelial activation, such as ICAM-1, VCAM-1,
and CD36, were downregulated by POH. POH treatment led to a significant reduction in T and B lymphocytes and macrophages
in the spleen. Therefore, POH effect causes an improvement in neurological and clinical features, preventing ECM development.

supernatant was collected and dried for further gas chromatography mass spectrometry (GC-MS) analy-
sis, as described by Saito et al. (57). For detection of POH and farnesol (internal standard), characteristic
ion for both terpenes at m/z 93 was monitored by selected ion monitoring (SIM) mode (Fig. S1).

Quantification of P. berghei ANKA'<feras¢ sequestration in the brain and other vital organs
using bioluminescence. On day 6 postinfection, POH-treated mice and PbA-mice were anesthetized
and injected i.p. with p-luciferin substrate (Promises, VivoGlo). After 5 min, the bioluminescence signal of
the whole bodies of the animals was monitored through an IVIS Lumina 200 (Xenogen) in vivo imaging
camera; first without and then after perfusion, the brain and other organs were removed and used for ex
vivo analysis. The exposure time ranged from 60 to 120 s depending on the signal strength. The mean
values of radiation (photons/s/cm?/sr) were calculated for region of interest (ROI) using Living Image
software 4.3.1 (64 bits) for experimental and control animals. Background values were obtained from
uninfected mice injected with luciferin.

Assessment of ICAM-1, VCAM-1, and CD36 in the brain using RT-PCR. Studies were conducted on
the relative quantification of genes encoding ICAM-1, VCAM-1, and CD36 proteins (Table S1). On day 6
postinfection, POH-treated mice or PbA-mice were anesthetized (n=5 per group) and the brains were
removed for RNA extraction using RNEasy Micro kit (Qiagen) extraction kit according to the manufac-
turer's recommended protocol (for purification of total RNA from animal and human cells). All results
were normalized according to the expression of the constitutive hypoxanthine-guanine phosphoribosyl
transferase (HPRT) gene and the data were analyzed using the 27247 relative quantification method, as
described by Livak et al. (58). Gene expression in uninfected animals was used as the baseline parameter.
Reverse transcription-quantitative PCR (qRT-PCR) was performed on the 7500 Fast apparatus (Applied
Biosystems).

Assessment of ICAM-1, VCAM-1, and CD36 in the brain using immunohistochemistry. On day 6
postinfection, POH-treated mice or PbA-mice (n =5 per group) were anesthetized and perfused transcar-
dially via the ascending aorta with approximately 20 ml of cold 0.9% saline. This step was followed by
250 ml of cold 4% formaldehyde in borate buffer (0.1 M, pH 9.5). The brains were dissected and postfixed
in the same fixative solution with 20% sucrose overnight. Next, frontal plane brain slices were obtained
in a freezing microtome (SM2000R, Leica, Germany) with 20 um thickness in five series. The slices were
stored in antifreeze solution at —20°C until immunohistochemistry method.

To identify and localize the ICAM-1, VCAM-1, and CD36 immunoreactive cells in all groups, we
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performed the indirect immunoperoxidase method. Series of sections were rinsed in 0.02 M potassium
phosphate buffer (KPBS, pH 7.4) and pretreated with a solution of 0.3% hydrogen peroxide (H,0,)
diluted in KPBS for 15 min. Next, the sections were rinsed in KPBS and then incubated in KPBS solution
containing 0.03% Triton X-100, 3% normal goat serum (Abcam, USA, AB_2716553), or 3% normal rabbit
serum (Vector Laboratories, USA, AB_2336619) with the primary antibody at 1:3,000 overnight at 4°C
(Table S2). Afterward, the sections were washed in KPBS and incubated in KPBS solution containing
0.03% Triton X-100 with biotinylated secondary antibody at 1:800 (Abcam, USA, AB_954902 or Vector
Laboratories, USA, AB_2336126) for 1 h at room temperature. Next, the slices were washed in KPBS and
then incubated in avidin-biotin-horseradish peroxidase solution at 1:333 (Vectastain ABC Elite, Vector
Laboratories, AB_2336819) for 1 h at room temperature. After washes in KPBS, the slices were submitted
to the peroxidase reaction using a solution of 0.003% hydrogen peroxide, 3,3’-diaminobenzidine tetra-
hydrochloride (DAB; 0.02%, Sigma Chemical, USA) as a chromogen, and 2.5% nickel ammonium sulfate
(NAS; Alfa Aesar, USA) diluted in 0.2 M sodium acetate buffer (pH 6.5) as a reaction amplifier. After
washes, sections were mounted onto gelatin-coated glass slides, dehydrated in ascending concentra-
tions of alcohol, deparaffinized in xylene, covered with a hydrophobic mounting medium (DPX, Sigma,
USA), and coverslipped.

Brightfield photomicrographs were acquired with a Nikon Eclipse 80i upright microscope (Nikon,
Japan) coupled to a digital camera (CX3000) operated with Microlucida 3.03 acquisition software
(MicroBrightField Inc., USA). All images were adjusted for brightness and contrast to provide uniformity
among the sections to do the analysis using Adobe Photoshop CS5.1 (Adobe Systems Inc., USA). For
immunohistochemistry (IHC) quantification, we used a semiquantitative method to represent staining
intensity which analyzes IHC photomicrographs using an IHC profiler. This IHC profiler has been well
done and accepted in the scientific literature for semiquantitative measurements, with high confidence
and accuracy (59-64). We randomly selected areas of the cerebral cortex (VCAM-1/ICAM-1) and periven-
tricular zone of the hypothalamus (CD36) to obtain the individual score labeling for each animal in all
groups. The analysis was performed by a researcher blinded to the results. The IHC images obtained
from the brain areas were analyzed by IHC profiler plugin using the ImageJ software (65) and by color
deconvolution (DAB-stained); therefore, an IHC score was generated for each animal/group based on
automated pixel counting (independent scores): 3+ (highly positive), 2+ (positive), 1+ (low-positive), 0
(negative) (64). Each IHC score/animal/group is represented as a heatmap column on the right side of
each representative brightfield photomicrograph for each animal/group analyzed. The most frequent
score was selected to represent the pattern of staining for VCAM-1, ICAM-1, and CD36 for each group of
animals analyzed, based on previous study (63). Moreover, the percentage of IHC score calculated from
each staining is represented in graphics for all groups.

Assessment of BBB permeability. BBB integrity was assessed using the Evans blue assay. Briefly, on
day 6 postinfection, POH-treated mice and PbA-mice were anesthetized and a 0.2-ml solution of 2%
Evans blue (Sigma-Aldrich) in phosphate-buffered saline (PBS) was injected intravenously into each
mouse. One hour later, mice were euthanized, the brain was removed, and Evans blue dye was extracted
from the brain tissue with 100% formamide (Sigma-Aldrich) for 48 h. The amount of Evans blue per milli-
liter of brain tissue extracts was determined by measuring the absorbance at 620 nm.

Permeability assay and morphometric analysis of the opening of OlJs of HBECs. Human brain
endothelial cells (HBECs/D3 cell line), kindly provided by Julio Scharfstein (Federal University of Rio de
Janeiro, Rio de Janeiro, Brazil), were cultured in Dulbecco modified Eagle medium (DMEM) supple-
mented with 10% fetal bovine serum and gentamicin at 37°C in a 5% CO, atmosphere until confluent.
The cells were then plated on 24-well transwell plates (Corning) (3 x 10° cells/well) and incubated for 24
h. Mature forms of P. falciparum/3D7 strain (unselected for receptor-specific cytoadherence) (30:1) or
50 ng/ml of TNF-a were plated for 6 h, and 20 «M POH was added concomitantly. After 6 h with the dif-
ferent stimuli, 0.1 ml of 1% Evans blue solution was added in each well for 40 min. The amount of Evans
blue leakage was determined by measuring the absorbance at 620 nm. In order to identify actin microfi-
laments and quantify OlJs, we performed the actin immunofluorescence using Texas Red phalloidin.
HBECs/D3 line were plated in 24-well plates (3 x 10° cells/well), adhered to gelatin on glass coverslips,
and maintained at 37°C with 5% CO,. The cells were stimulated with mature forms of 3D7 strain of P. fal-
ciparum (unselected for receptor-specific cytoadherence) and TNF-a for 6 h and cotreated with 20 uM
POH. Subsequently, the cells were fixed with 3.7% formaldehyde, permeabilized with acetone at —20°C,
and blocked with 1% bovine serum albumin solution. Actin was marked with Texas Red phalloidin (Life
Technologies) for 20 min. The cell nuclei were stained with Hoechst (H33342, Life Technologies). Each
slide, with fully confluent cells, was chosen randomly and 10 to 20 pictures were taken and scanned in a
“zig-zag” way, from top to bottom. The quantification was performed by a researcher blinded to the
results. The images were acquired using a fluorescence Axio Imager M2 (Zeiss) microscope using the
Axio Cam HRc (Zeiss) and Axio Vision software, version 4.9.1.0. The total area of the OlJs was measured
in each picture using the software ImageJ.

Characterization of cellular populations from the spleens of C57BL/6 mice using flow cytometry.
On day 6 postinfection, POH-treated mice or PbA-mice were anesthetized, and the spleens were col-
lected and immediately placed in RPMI medium containing 10% fetal bovine serum and cut into pieces.
Tissue extracts were macerated with a 100-um nylon cell filter, and then the cell-free supernatant was
centrifuged at 400 x g for 5min and the pellets were resuspended in RPMI. The cell suspension was
treated with RBC lysis buffer (155 mM NH,Cl, 10mM NaHCO,, 0.1 mM EDTA [pH 7.3]) to remove RBCs.
Cell viability was verified using Trypan Blue (Sigma-Aldrich). The cells (1 x 10° cells per well) were incu-
bated with PerCP-Cy5.5-conjugated anti-CD3 antibody (clone145-2C11, BD Biosciences), PE-Cy7-conju-
gated anti-CD19 antibody (clone 1D3, BD Biosciences), APC-conjugated anti-CD8 antibody (clone53-6.7,
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BD Biosciences), BV510-conjugated anti-CD4 antibody (cloneRM4-5, BD Biosciences), and BV786-conju-
gated anti-Ly-6G antibody (clone 1, BD Biosciences) for 1 h at 4°C. The cells were washed and suspended
in PBS and analyzed using the LSR Fortessa BD cytometer. The results were analyzed using FlowJo X
software.

Statistical analysis. For comparison of means of more than two treatments, variables with normal
distribution were analyzed using one-way analysis of variance, and other variables were analyzed using
nonparametric Kruskal-Wallis tests, with Tukey’s or Dunn’s posttest. For comparison of means between
two groups, an unpaired Student’s t test was used. The analyses were performed using GraphPad PRISM
software version 5.3. Pvalues of <0.05 were considered statistically significant.

SUPPLEMENTAL MATERIAL
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